
A Simple Implementation Technique for
Priority Search Queues

Ralf Hinze
Institute of Information and Computing Sciences, Utrecht University

P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

ralf@cs.uu.nl

ABSTRACT
This paper presents a new implementation technique for pri-
ority search queues. This abstract data type is an amazing
blend of finite maps and priority queues. Our implementa-
tion supports logarithmic access to a binding with a given
key and constant access to a binding with the minimum
value. Priority search queues can be used, for instance, to
give a simple, purely functional implementation of Dijkstra’s
single-source shortest-paths algorithm.

A non-technical concern of the paper is to foster abstract
data types and views. Priority search queues have been
largely ignored by the functional programming community
and we believe that they deserve to be known better. Views
prove their worth both in defining a convenient interface to
the abstract data type and in providing a readable imple-
mentation.

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming; D.3.2 [Programming Languages]:
Language Classifications—applicative (functional) languages ;
D.3.3 [Programming Languages]: Language Constructs
and Features—abstract data types; E.1 [Data]: Data Struc-
tures—trees; F.2.2 [Analysis of Algorithms and Prob-
lem Complexity]: Nonnumerical Algorithms and Prob-
lems—sorting and searching ; I.1.2 [Computing Method-
ologies]: Algorithms—analysis of algorithms

General Terms
Algorithms, design, performance

Keywords
Priority search queues, views, Haskell, tournament

1. INTRODUCTION
The aim of this paper is threefold:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFP’01, September 3–5, 2001, Florence, Italy.
Copyright 2001 ACM 1-58113-415-0/01/0009 ...$5.00.

First, we would like to advertise priority search queues,
a useful abstract data type that has been largely ignored
by the functional programming community and that de-
serves to be known better. Priority search queues are an
amazing blend of finite maps (or dictionaries) and priority
queues, that is, they support both dictionary operations (for
instance, accessing a binding with a given key) and prior-
ity queue operations (for instance, accessing a binding with
the minimum value). We give two simple applications that
demonstrate their usefulness: a purely functional implemen-
tation of Dijkstra’s single-source shortest-paths algorithm
and an efficient implementation of the first-fit heuristics for
the bin packing problem.

Second, we describe a simple implementation technique
for the abstract data type. The standard implementation
of priority search queues, McCreight’s priority search trees
[14], combines binary search trees and heaps. Unfortunately,
balanced search trees and heaps do not go well together. Ro-
tations that are typically used to maintain balance destroy
the heap property and restoring the property takes Θ(h)
time where h is the height of the tree. Consequently, in
order to attain overall logarithmic time bounds the under-
lying balancing scheme must guarantee that the number of
rotations per update is bounded by a constant. We show
that it is possible to weaken the heap property so that ro-
tations become constant time operations without sacrificing
the running time of the priority queue methods. Thus, we
can freely choose an underlying balancing scheme—we illus-
trate our approach using weight-balanced trees [1].

Third, we would like to promote the use of views. Views
have been introduced by Wadler [23] to relieve the tension
between pattern matching and abstraction. Briefly, views
allow any type (in particular, any abstract data type) to be
viewed as a free data type. We have found views not only
useful for providing a convenient interface to an abstract
data type but also extremely helpful in the implementation
itself. The use of views made the code substantially clearer.

The remainder of this paper is structured as follows. Sec-
tion 2 briefly reviews the concept of views. Section 3 in-
troduces the abstract data type priority search queue and
Section 4 illustrates its use. Section 5 provides a simple
implementation based on unbalanced trees. Section 6 then
shows how to augment the basic implementation by a bal-
ancing scheme. Section 7 analyses the running time of so-
called range queries. Finally, Section 8 reviews related work
and Section 9 concludes.

2. PRELIMINARIES: VIEWS
The code in this paper is given in Haskell 98 [19] aug-

mented by the concept of views [4, 16]. This section briefly
reviews Okasaki’s proposal for views [16].

A view allows any type to be viewed as a free data type.
A view declaration for a type T consists of an anonymous
data type, the view type, and an anonymous function, the
view transformation, that shows how to map elements of T
to the view type. Here is a simple example that defines a
minimum view on lists:

view (Ord a) ⇒ [a] = Empty | Min a [a] where
[] → Empty
a1 : Empty → Min a1 []
a1 : Min a2 as
| a1 6 a2 → Min a1 (a2 : as)
| otherwise → Min a2 (a1 : as).

This declaration introduces two constructors, Empty and
Min, that henceforth can be used to pattern match elements
of type [a], where the context ‘(Ord a) ⇒’ restricts a to
instances of Ord . The minimum view allows any list to
be viewed as an ordered list. The following definition of
selection sort nicely illustrates the use of views:

selection-sort :: (Ord a) ⇒ [a] → [a]
selection-sort Empty = []
selection-sort (Min a as) = a : selection-sort as.

The view constructors can be freely mixed with ordinary
data type constructors. In fact, the view transformation of
the minimum view already illustrates nested patterns. A
type can even have multiple views. However, view construc-
tors may only appear in patterns—with the notable excep-
tion of the view transformation itself.

View declarations can be implemented by a simple source
to source translation: each view is expanded into a data
type and a function. For the minimum view we obtain:

data Min-View a = Empty | Min a [a]

min-view :: (Ord a) ⇒ [a] → Min-View a
min-view x1 = case x1 of

[] → Empty
a1 : x2 → case min-view x2 of

Empty → Min a1 []
Min a2 as
| a1 6 a2 → Min a1 (a2 : as)
| otherwise → Min a2 (a1 : as).

The function is invoked whenever constructors of the view
appear in patterns. In our example, the view constructors
appear in the view transformation itself. Consequently, it is
expanded into a recursive function. Selection sort becomes:

selection-sort x = case minView x of
Empty → []
Min a as → a : selection-sort as.

For a precise definition of the semantics we refer the in-
terested reader to Okasaki’s paper [16]—the proposal is for
Standard ML but it can be easily adapted to Haskell 98.

3. PRIORITY SEARCH QUEUES
The abstract data type priority search queue is conceptu-

ally a finite map that supports efficient access to the binding

with the minimum value, where a binding is an argument-
value pair and a finite map is a finite set of bindings. For
emphasis, we call the arguments keys and the associated
values priorities. The functions key and prio are used to
access the key and the priority of a binding.

key (k , p) = k

prio (k , p) = p.

The abstract data type of priority search queues is paramet-
ric in the types of keys and priorities:

data PSQ k p.

Most operations on priority search queues require that both
k and p are totally ordered. This condition is expressed in
Haskell by the context ‘(Ord k ,Ord p) ⇒’. However, in the
rest of this paper we will omit the context to reduce clutter.

Priority search queues support both finite map and prior-
ity queue operations plus so-called range queries.

Constructors and insertion.

∅ :: PSQ k p
{·} :: (k , p) → PSQ k p
insert :: (k , p) → PSQ k p → PSQ k p
from-ord-list :: [(k , p)] → PSQ k p

The constructor ∅ represents the empty queue; {b} creates
a queue that contains b as the single binding; insert b q
inserts binding b into q (if the queue contains a binding
with the same key, then the old binding is overwritten); and
from-ord-list converts a list of bindings into a queue with
the precondition that the list is sorted into increasing order
by key.

Destructors and deletion.

view PSQ k p = Empty | Min (k , p) (PSQ k p)
delete :: k → PSQ k p → PSQ k p

A queue is destructed using the patterns Empty and Min b q
introduced by the view declaration. The function delete re-
moves a binding with the given key (the queue is left un-
changed if it does not contain a binding with the key). The
constructors of the minimum view have the following mean-
ing: if a queue pattern matches Empty, then it is empty;
otherwise it matches Min b q where b is the binding with the
minimum priority and q is the remaining queue. Thus, us-
ing the view we can effectively treat a priority search queue
as a list of bindings ordered by priority.

Observers.

lookup :: k → PSQ k p → Maybe p
to-ord-list :: PSQ k p → [(k , p)]
at-most :: p → PSQ k p → [(k , p)]

The function lookup finds the priority associated with a
given key: the call lookup k q returns Nothing if the queue
does not contain the key k ; otherwise it yields Just p where
p is the priority associated with k . The function to-ord-list
converts a queue into a list of bindings ordered by key. Pri-
ority search queues not only support dictionary and priority
queue operations. As a little extra they also allow for so-
called range queries: at-most pt q returns a list of bindings
ordered by key whose priorities are at most pt . In the full

version of the paper [9] we also discuss range queries that
additionally take a key range into account.

Modifier.

adjust :: (p → p) → k → PSQ k p → PSQ k p

The function adjust changes a binding for the given key
by applying the function to its priority (the queue is left
unchanged if it does not contain a binding with the key).

4. APPLICATIONS

4.1 Single-source shortest-paths problem
Dijkstra’s algorithm for the single-source shortest-paths

problem serves as a nice example for the use of priority
search queues. The algorithm maintains a queue that maps
each vertex to its estimated distance from the source. The
algorithm works by repeatedly removing the vertex with
minimal distance and updating the distances of its adja-
cent vertices. Priority search queues support both opera-
tions equally well. The update operation is typically called
decrease:

decrease :: (k , p) → PSQ k p → PSQ k p
decrease (k , p) q = adjust (min p) k q

decrease-list :: [(k , p)] → PSQ k p → PSQ k p
decrease-list bs q = foldr decrease q bs.

Note that decrease (k , p) q has no effect if k ’s priority in q
is less than p.

To keep the presentation terse we assume that the follow-
ing functions on graphs are provided from somewhere.

vertices :: Graph → [Vertex]
adjacent :: Graph → Vertex → [Vertex]

The function vertices returns an ordered list of all vertices
of a graph; adjacent produces a list of vertices adjacent to
the given one.

The function dijkstra defined below takes three arguments:
a directed graph, a weight function, and a source vertex. It
returns a list of vertex-distance bindings that determine the
minimal distance of each vertex from the source.

type Weight = Vertex → Vertex → Double

dijkstra :: Graph → Weight → Vertex
→ [(Vertex ,Double)]

dijkstra g w s = loop (decrease (s, 0) q0)
where
q0 = from-ord-list [(v , +∞) | v ← vertices g]

loop Empty = []
loop (Min (u, d) q)

= (u, d) : loop (decrease-list bs q)
where bs = [(v , d + w u v) | v ← adjacent g u]

The helper function loop uses the minimum view to process
the queue. Note that the computed list of vertex-distance
bindings may contain bindings with priority +∞, which in-
dicates that the given graph was not strongly connected.
Now, if we assume that the computation of the view and the
decrease operation each take Θ(log V) time, then the algo-
rithm has a worst-case running time of Θ((V + E) log V),
which is the best known running time for purely functional
implementations.

Remark 1. If we modify the computation of the new dis-
tances as follows

. . . where bs = [(v ,w u v) | v ← adjacent g u],

we obtain Prim’s algorithm for computing a minimum span-
ning tree.

4.2 One-dimensional bin packing
As the second example we employ priority search queues

to implement the first-fit heuristics for the bin packing prob-
lem. Recall that the standard list-based implementation
shown below has a worst-case running time of Θ(n2) where
n is the number of items.

pack-first-fit :: [Item] → [Bin]
pack-first-fit = foldl first-fit []

first-fit :: [Bin] → Item → [Bin]
first-fit [] i = [i]
first-fit (b : bs) i
| b + i 6 1 = b + i : bs
| otherwise = b : first-fit bs i

The function pack-first-fit takes a list of items, each of a
certain size, and returns a list of bins that contain the input
items. For simplicity, we represent an item by its size and a
bin by its total size (each bin has a capacity of 1).

Using priority search queues we can improve the running
time of the näıve implementation to Θ(n log n). The central
idea is to use the function at-most to quickly determine the
first bin that can accommodate a given item (the bins are
numbered consecutively).

type No = Int

pack-first-fit :: [Item] → [Bin]
pack-first-fit is = [prio b | b ← to-ord-list q]

where (q ,) = foldl first-fit (∅, 0) is

first-fit :: (PSQ No Bin,No) → Item
→ (PSQ No Bin,No)

first-fit (q ,n) i = case at-most (1− i) q of
[] → (insert (n, i) q ,n + 1)
(k ,) : → (adjust (+i) k q ,n)

This is the only place where essential use is made of Haskell’s
non-strict semantics as we merely require the first element
of the list returned by at-most. In a strict language, we
would be forced to define a specialized version of at-most
that computes the first binding only (if any).

5. PRIORITY SEARCH PENNANTS
This section describes an implementation of priority search

queues based on unbalanced search trees. Great care has
been taken to modularize the code so that a balancing scheme
can be added later with ease (Section 6 discusses the nec-
essary amendments). It should be noted, however, that the
implementation in this section is perfectly suitable for Dijk-
stra’s or Prim’s algorithm since both do not require inser-
tions.

The underlying idea of the implementation is best ex-
plained using the metaphor of a knockout tournament. Con-
sider the tournament depicted in Figure 1. We have eight
participants, so the course of matches forms a complete bi-
nary tree. Each external node corresponds to a participant;
each internal node corresponds to a winner of a match. To
facilitate searching the participants are arranged from left

Charles 4 Erik 2 Lennart 1 Mary 6 Phil 3 Richard 7 Simon 5 Warren 8

Erik 2 Lennart 1 Phil 3 Simon 5

Lennart 1 Phil 3

Lennart 1

Figure 1: A tournament tree.

to right in increasing order by name. Tournament trees are
almost a suitable data structure for priority search queues
if it were not for the many repeated entries. The champion,
for instance, appears on every level of the tree. Now, there
are at least two ways to repair this defect.

One possibility is to promote losers up the tree turning
the tournament tree of Figure 1 into the heap-structured
tree of Figure 2. This transformation usually involves ad-
ditional matches. In our example, Erik has to play with
Mary to determine the second-best player of the first half of
the tournament. Pursuing this idea further leads to a data
structure known as a priority search tree [14]. We will come
back to this data structure in Sections 7 and 8.

An alternative possibility, which we will investigate in this
section, is to label each internal node with the loser of the
match, instead of the winner, and to drop the external nodes
altogether. If we additionally place the champion on top
of the tree, we obtain the topped loser tree of Figure 3.
We call the resulting data structure priority search pennant.
Since every participant—with the notable exception of the
champion—loses exactly one match, the pennant does not
contain repeated entries. It is important to note, however,
that the loser tree is not heap-structured. Since the nodes
are labelled with losers, they dominate, in general, only one
subtree. The node labelled Phil, for instance, dominates its
right but not its left subtree. Thus the loser tree constitutes
only a so-called semi-heap.

The Haskell data type for priority search pennants is a
direct implementation of the above ideas except that we
additionally introduce split keys (or search keys) to support
searching.

data PSQ k p = Void
| Winner (k , p) (LTree k p) k

data LTree k p = Start
| Loser (k , p) (LTree k p) k (LTree k p)

Here,Void represents the empty tournament; Winner b t m
represents a tournament that b has won, t is the associated
loser tree and m is the maximum key. Likewise, Start is the
empty loser tree; Loser b tl k tr represents a subtournament
that b has lost, tl is the left subtree, k is the split key, and tr
is the right subtree. The maximum key is usually accessed
using the function max-key.

max-key :: PSQ k p → k
max-key (Winner b t m) = m

We will see in Section 5.1 why it is useful to keep track of
the maximum key.

Priority search pennants combine the features of search
trees and semi-heaps. To formulate the invariants, it is
convenient to view the top node Winner b t m as a bi-
nary node with an empty right subtree so that the maxi-
mum key becomes an ordinary split key (Winner b t m ∼=
Loser b t m Start).

Semi-heap conditions: 1) Every priority in the pennant
must be greater than or equal to the priority of the
winner. 2) For all nodes in the loser tree, the priority
of the loser’s binding must be less than or equal to the
priorities of the bindings of the subtree from which
the loser originates. The loser originates from the left
subtree if its key is less than or equal to the split key,
otherwise it originates from the right subtree.

Search-tree condition: For all nodes, the keys in the left
subtree must be less than or equal to the split key and
the keys in the right subtree must be greater than the
split key.

Key condition: The maximum key and the split keys must
also occur as keys of bindings.

Finite map condition: The pennant must not contain two
bindings with the same key.

Warren 8

Charles 4 Mary 6 Richard 7 Simon 5

Erik 2 Phil 3

Lennart 1

Figure 2: The heap corresponding to the tournament of Figure 1.

Charles 4 Mary 6 Richard 7 Warren 8

Erik 2 Simon 5

Phil 3

Lennart 1

Figure 3: The semi-heap corresponding to the tournament of Figure 1.

L1
W

P3
M

E2
E

C4
C

M6
L

S5
R

R7
P

W8
S

Figure 4: The priority search pennant correspond-
ing to the tree of Figure 3.

Two remarks are in order. First, the second semi-heap con-
dition shows that a priority search pennant contains enough
information to reconstruct the original tournament tree. This
ability is crucial for implementing the priority queue opera-
tions. Second, the key condition ensures that every search
key originates from a binding in the tree. This means, in
particular, that if we delete a binding from a tree, we must
also delete the key’s second occurrence as a search key. We
will see that it is relatively easy to maintain this invariant.

Let us consider an example. If we augment the tree of
Figure 3 by split keys, we obtain the priority search pen-
nant depicted in Figure 4. Note that the dotted lines mark
the subtrees that are not dominated by the loser. As we
have remarked before, the semi-heap structure can also be
determined by comparing the loser’s key to the split key:
the node labelled Phil, for instance, dominates its right sub-
tree since P > M ; the node labelled Erik on the other hand
dominates its left subtree since E 6 E. The pennant can
quite easily be expressed as a Haskell term:

Winner (L, 1) (
Loser (P, 3) (

Loser (E, 2) (
Loser (C, 4) Start C Start) E (
Loser (M, 6) Start L Start)) M (

Loser (S, 5) (
Loser (R, 7) Start P Start) R (
Loser (W, 8) Start S Start))) W.

Note that if we list the search keys from left to right, we
obtain the keys of the participants in increasing order.

Remark 2. The nodes are decorated with bindings of type
(k , p). While this is convenient for the presentation, it comes
at a small run-time cost since every access involves one extra
level of indirection. In the production code, which is avail-
able from http://www.cs.uu.nl/~ralf/software, we speed
up the access by storing the keys and the priorities directly
in the nodes.

5.1 Constructors
The empty queue and the singleton queue are defined as

follows:

∅ :: PSQ k p
∅ = Void

{·} :: (k , p) → PSQ k p
{b} = Winner b Start (key b).

The data types PSQ and LTree have been designed to effi-
ciently support the binary operation (&), which corresponds
to playing a match. This operation, which is used by most
of the remaining functions, takes two pennants and returns
a new pennant that is the union of the two with the precon-
dition that the keys in the first tree are strictly smaller than
the keys in the second tree. The operation is illustrated in
Figure 5.

(&) :: PSQ k p → PSQ k p → PSQ k p
Void & t ′ = t ′

t & Void = t
Winner b t m & Winner b′ t ′ m ′

| prio b 6 prio b′ = Winner b (Loser b′ t m t ′) m ′

| otherwise = Winner b′ (Loser b t m t ′) m ′

Note that in order to construct the loser tree we require a
split key, which is why we keep track of the maximum key in
the top node. This makes ‘&’ a constant-time operation. It
is not hard to see that ‘&’ preserves the invariants of priority
search pennants. Using ‘&’ we can easily define from-ord-list.

from-ord-list :: [(k , p)] → PSQ k p
from-ord-list = foldm (&) ∅ · map (λb → {b})

The helper function foldm, which is listed in the full version
of this paper [9], folds a list in a binary-sub-division fashion.
For instance,

from-ord-list [(A, 4), (D , 2), (E , 1), (J , 6),
(L, 3), (N , 7), (P , 5), (V , 8)]

reduces to

(({A, 4} & {D , 2}) & ({E , 1} & {J , 6}))
& (({L, 3} & {N , 7}) & ({P , 5} & {V , 8})),

which in turn evaluates to the tree of Figure 4. In general,
the expression tree generated by foldm takes the form of a
leaf-oriented Braun tree [3]. Since ‘&’ preserves the shape
of the expression tree, the priority search pennant produced
by from-ord-list corresponds to a topped Braun tree. This
means, in particular, that the shape is solely determined by
the total number of participants (and not by their priorities).

5.2 Destructors
The minimum view is implemented as follows:

view PSQ k p = Empty | Min (k , p) (PSQ k p) where
Void → Empty
Winner b t m → Min b (second-best t m).

The function second-best used in the second clause deter-
mines the second-best player by replaying the tournament
without the champion.

second-best :: LTree k p → k → PSQ k p
second-best Start m = Void
second-best (Loser b t k u) m
| key b 6 k = Winner b t k & second-best u m
| otherwise = second-best t k & Winner b u m

Note that only those players who lost to the champion are
taken into account. The origin of the champion is deter-
mined by comparing the loser’s key to the split key.

Again, it is straightforward to see that second-best pre-
serves the invariants except perhaps for the key condition:
does second-best also remove the search key of the cham-
pion? This is most easily shown if we define second-best on

b1
m2

b2
m1

t1 t2

b16b2⇐=

b1
m1

t1

&

b2
m2

t2

b1>b2=⇒

b2
m2

b1
m1

t1 t2

Figure 5: Playing a match (b1 6 b2 is shorthand for prio b1 6 prio b2).

pennants instead of loser trees (we call this variant del-min):

del-min :: PSQ k p → PSQ k p
del-min Void = Void
del-min (Winner b Start m)

= Void
del-min (Winner b (Loser b′ t k u) m)
| key b′ 6 k = Winner b′ t k & del-min (Winner b u m)
| otherwise = del-min (Winner b t k) & Winner b′ u m.

Since the argument of del-min is always a legal pennant, m
must equal key b in the second equation by virtue of the key
condition. Furthermore, we know that b is the champion,
since the champion is passed unchanged to the recursive
calls. The function second-best can now be seen as a simple
optimization: we have

del-min (Winner b t m) = second-best t m.

Remark 3. When we replay a tournament we determine
the origin of a loser by comparing the loser’s key to the split
key (key b 6 k). Instead of using this perhaps costly com-
parison, we can alternatively code the information into the
constructors when building the tree:

data LTree k p = Start
| LLoser (k , p) (LTree k p) k (LTree k p)
| RLoser (k , p) (LTree k p) k (LTree k p).

This is, in fact, the representation we use in the production
code. The original representation, however, is slightly easier
to augment by a balancing scheme.

5.3 Observers
Views are not only convenient for the client of an abstract

data type. They can also be tremendously helpful when im-
plementing an abstract data type. The following declaration
allows us to view a pennant as a tournament tree.

view PSQ k p = ∅ | {k , p} | PSQ k p & PSQ k p
where
Void → ∅
Winner b Start m → {b}
Winner b (Loser b′ tl k tr) m
| key b′ 6 k → Winner b′ tl k & Winner b tr m
| otherwise → Winner b tl k & Winner b′ tr m

Note that we have taken the liberty of using ∅, {·} and
‘&’ also as constructors. There is little danger of confu-
sion since the constructors of the view may only appear in
patterns—with the notable exception of the view transfor-
mation itself—while the functions of the same name may
only appear in expressions. The view transformation is es-
sentially the inverse of the ‘&’ operation. In particular, if a

winner tree matches tl & tr , then it is guaranteed that the
keys in tl are strictly smaller than the keys in tr . Further-
more, both tl and tr are non-empty.

The function to-ord-list, which converts a queue into a list
of bindings ordered by key, nicely illustrates the use of the
tournament view.1

to-ord-list :: PSQ k p → [(k , p)]
to-ord-list ∅ = []
to-ord-list {b} = [b]
to-ord-list (tl & tr) = to-ord-list tl ++ to-ord-list tr

In the last clause we rely on the fact that the keys in tl
precede the keys in tr .

It is instructive to rewrite the definition of to-ord-list into
a form that does not make use of views. We will see that
the resulting code is much harder to read. On the other
hand, the rewrite opens the possibility of small improve-
ments (which a good optimizing compiler might be able to
perform automatically). As the first step, we fuse the view
transformation and the original function:

to-ord-list :: PSQ k p → [(k , p)]
to-ord-list Void = []
to-ord-list (Winner b Start m)

= [b]
to-ord-list (Winner b (Loser b′ tl k tr) m)
| key b′ 6 k = to-ord-list (Winner b′ tl k)

++ to-ord-list (Winner b tr m)
| otherwise = to-ord-list (Winner b tl k)

++ to-ord-list (Winner b′ tr m).

Note that in each of the recursive calls to-ord-list is passed
a non-empty winner tree. Furthermore, the maximum key
and the split keys are never used. This suggests specializing
to-ord-list (Winner b t m) to traverse b t :

to-ord-list :: PSQ k p → [(k , p)]
to-ord-list Void = []
to-ord-list (Winner b t m) = traverse b t

traverse :: (k , p) → LTree k p → [(k , p)]
traverse b Start = [b]
traverse b (Loser b′ tl k tr)
| key b′ 6 k = traverse b′ tl ++ traverse b tr
| otherwise = traverse b tl ++ traverse b′ tr .

Most of the following functions can be optimized along these
lines.

1Due to the use of (++) the definition of to-ord-list exhibits
Θ(n2) worst-case behaviour. This is, however, easily reme-
died using standard techniques.

The look-up function is very similar to the look-up func-
tion for binary search trees. Again, the tournament view
allows for a very natural implementation.

lookup :: k → PSQ k p → Maybe p
lookup k ∅ = Nothing
lookup k {b}
| k key b = Just (prio b)
| otherwise = Nothing

lookup k (tl & tr)
| k 6 max-key tl = lookup k tl
| otherwise = lookup k tr

The running time of lookup is proportional to the height
of the tree even if we search for a binding that is high up
in the tree. This observation suggests to additionally test
the bindings on the search path at the cost of one additional
comparison per recursive call. Of course, this change neither
affects the worst-case nor the average-case running time.

lookup′ :: k → PSQ k p → Maybe p
lookup′ k (Min b q)
| k key b = Just (prio b)

lookup′ k ∅ = Nothing
lookup′ k {b} = Nothing -- we know that k 6 key b
lookup′ k (tl & tr)
| k 6 max-key tl = lookup′ k tl
| otherwise = lookup′ k tr

Note that this version of the look-up function uses both the
minimum and the tournament view.

5.4 Modifier, insertion, and deletion
The dictionary functions adjust , insert , and delete can be

most easily implemented using the tournament view.

adjust :: (p → p) → k → PSQ k p → PSQ k p
adjust f k ∅ = ∅
adjust f k {b}
| k key b = {k , f (prio b)}
| otherwise = {b}

adjust f k (tl & tr)
| k 6 max-key tl = adjust f k tl & tr
| otherwise = tl & adjust f k tr

The modifier adjust does not change the shape of the pen-
nant. By contrast, insert possibly increases the height of
the tree. Since the loser trees are not balanced, there is the
annoying possibility that repeated insertions may produce a
degenerated tree.

insert :: (k , p) → PSQ k p → PSQ k p
insert b ∅ = {b}
insert b {b′}
| key b < key b′ = {b} & {b′}
| key b key b′ = {b} -- update
| key b > key b′ = {b′} & {b}

insert b (tl & tr)
| key b 6 max-key tl = insert b tl & tr
| otherwise = tl & insert b tr

In the case of search trees deletion is notoriously more diffi-
cult to handle than insertion. Perhaps surprisingly, this does
not hold for priority search pennants. The reason is simply
that using the tournament view all modifications take place

at the fringe of the tree:

delete :: k → PSQ k p → PSQ k p
delete k ∅ = ∅
delete k {b}
| k key b = ∅
| otherwise = {b}

delete k (tl & tr)
| k 6 max-key tl = delete k tl & tr
| otherwise = tl & delete k tr .

Given the hybrid nature of priority search pennants the def-
inition of delete is surprisingly attractive.

5.5 Range queries
Like the second version of the look-up function, the query

function at-most employs two views simultaneously. The
minimum view is used to prune the search if a node is en-
countered whose priority is greater than the given one.

at-most :: p → PSQ k p → [(k , p)]
at-most pt (Min b q)
| prio b > pt = []

at-most pt ∅ = []
at-most pt {b} = [b] -- we know that prio b 6 pt

at-most pt (tl & tr) = at-most pt tl ++ at-most pt tr

The query function is analysed in Section 7.

6. A BALANCED SCHEME
One of the strengths of priority search pennants as com-

pared to priority search trees is that the basic implementa-
tion can be easily extended by a balancing scheme. Most
schemes use rotations to restore balancing invariants. Now,
while rotations preserve the search-tree property, they do
not preserve the semi-heap property as the following exam-
ple shows.

F2
E

D5
B

t1 t2

t3

=⇒

D5
B

t1

F2
E

t2 t3

In the original tree, both losers, D and F , dominate their
right subtree. This implies that they have not played against
each other and that the winner stems from the leftmost sub-
tree t1. Now, if we rotate the loser tree to the right, the
new root should dominate its right subtree but it does not.
To restore the semi-heap property we have to exchange D5
and F2. We will see that, in general, at most one exchange
at the cost of at most one additional comparison is required.
In other words, rotations are constant time operations for
priority search pennants.

By contrast, in the case of priority search trees we have to
preserve the heap property, which takes Θ(h) time where h
is the height of the tree. This means, in particular, that in
order to ensure an overall logarithmic time bound, the num-
ber of rotations per update must be bounded by a constant.
Red-black trees [6] or 2-3-4 trees [10] satisfy this constraint.
On the other hand, AVL trees [2] or weight-balanced trees

[1] do not guarantee such a bound. Ironically, Okasaki’s el-
egant functional implementation of red-black trees [17] also
fails to meet this condition.

However, for priority search pennants we can freely choose
an underlying balancing scheme. We pick Adams’s weight-
balanced trees [1] since they support insertions and deletions
equally well. A tree is weight-balanced if for all nodes either
both subtrees have at most one element or one subtree does
not have more than ω times as many elements as the op-
posite subtree, where ω is some constant > 3.75. To check
and to maintain the invariant, each node in a loser tree is
augmented by a size field:

type Size = Int

data Tree k p = Lf
| Nd Size (k , p) (Tree k p) k (Tree k p).

Using views and smart constructors we can make the com-
putation of the size field totally transparent.

leaf = Lf

node b l k r = Nd (1 + size l + size r) b l k r

view Tree k p = Leaf
| Node (k , p) (Tree k p) k (Tree k p)

where
Lf → Leaf
Nd b l k r → Node b l k r

size :: Tree k p → Size
size Lf = 0
size (Nd s) = s

In the sequel we will use the smart constructors leaf and
node to construct weight-balanced trees, the view construc-
tors Leaf and Node to pattern match weight-balanced trees,
and the function size to query the size field.

The balance function defined below maintains weight-bal-
ance using single and double rotations under the precondi-
tion that at most one subtree has changed size by at most
one element and the original tree was in balance. The algo-
rithm is described in more detail in Adams [1].

balance b l k r
| size l + size r < 2 = node b l k r
| size r > ω ∗ size l = balance-left b l k r
| size l > ω ∗ size r = balance-right b l k r
| otherwise = node b l k r

balance-left b l k r@(Node rl rr)
| size rl < size rr = single-left b l k r
| otherwise = double-left b l k r

balance-right b l@(Node ll lr) k r
| size lr < size ll = single-right b l k r
| otherwise = double-right b l k r

The balance operation is essentially the same as for search
trees. Only the implementation of the rotations is more elab-
orate since they have to maintain the semi-heap property.
Figure 6 displays the possible cases for a single rotation to
the right. Since a single rotation involves two nodes and
since each node may dominate one of two subtrees, we must
distinguish four different cases. The only problematic case
is the last one, where we have to perform one additional
match to determine the top binding. In general, b1 is the
new top binding iff key b2 > k1 and prio b1 6 prio b2. The

four cases for the left rotation are symmetric:

single-left b1 t1 k1 (Node b2 t2 k2 t3)
| key b2 6 k2 ∧ prio b1 6 prio b2

= node b1 (node b2 t1 k1 t2) k2 t3
| otherwise = node b2 (node b1 t1 k1 t2) k2 t3

single-right b1 (Node b2 t1 k1 t2) k2 t3
| key b2 > k1 ∧ prio b1 6 prio b2

= node b1 t1 k1 (node b2 t2 k2 t3)
| otherwise = node b2 t1 k1 (node b1 t2 k2 t3).

Double rotations are implemented in terms of single rota-
tions.

double-left b1 t1 k1 (Node b2 t2 k2 t3)
= single-left b1 t1 k1 (single-right b2 t2 k2 t3)

double-right b1 (Node b2 t1 k1 t2) k2 t3
= single-right b1 (single-left b2 t1 k1 t2) k2 t3

Remark 4. Since a double rotation is defined in terms
of two single rotations, at most two additional matches are
required. Perhaps surprisingly, one can show that only one
additional match suffices. A direct implementation of the
double rotations is left as an exercise to the reader.

It remains to adapt the implementation of Section 5 to
balanced trees. This can be done by a simple renaming:
occurrences of the constructors Start and Loser in patterns
must be replaced by Leaf and Node; occurrences in expres-
sions must be replaced by leaf and balance. The smart con-
structor node can be used instead of balance if the shape of
the tree has not changed (as in the case of adjust) or if the
tree is known to be balanced (as in the case of from-ord-list).

Let us conclude the section with a brief discussion of the
running times of the various operations. For simplicity, we
assume that we are working in a strict setting. Weight-
balanced trees have a height that is logarithmic in the num-
ber of elements. Consequently, the dictionary operations
(lookup, insert , and delete) and the priority queue opera-
tions (Min) have a worst-case running time of Θ(log n). The
conversion functions from-ord-list and to-ord-list are both
linear in the number of bindings. Finally, the range query
at-most takes Θ(r(log n − log r + 1)) time where r is the
length of the output list—the next section contains a de-
tailed analysis. The following table summarizes the running
times:

Constructors and insertion Destructors and deletion

∅ Θ(1) Empty Θ(1)
{·} Θ(1) Min Θ(log n)
insert Θ(log n) delete Θ(log n)
from-ord-list Θ(n)

Observers Modifier

lookup Θ(log n) adjust Θ(log n)
to-ord-list Θ(n)
at-most Θ(r(log n− log r + 1)).

7. ANALYSIS OF RANGE QUERIES
The range query at-most is a so-called output-sensitive al-

gorithm, that is, its running time is not only governed by the
total number of bindings in the tree but also by the number
of bindings it returns as a result. To estimate its running
time we have to determine the number of nodes that must
be inspected to return r outputs. A general observation is

b1
k2

b2
k1

t1 t2

t3

(b2 & b1) & −∞

=⇒

b2
k1

t1

b1
k2

t2 t3

b2 & (b1 & −∞)

b1
k2

b2
k1

t1 t2

t3

(b1 & b2) & −∞

=⇒

b1
k1

t1

b2
k2

t2 t3

b1 & (b2 & −∞)

b1
k2

b2
k1

t1 t2

t3

(b2 & −∞) & b1

=⇒

b2
k1

t1

b1
k2

t2 t3

b2 & (−∞ & b1)

b1
k1

t1

b2
k2

t2 t3

−∞ & (b2 & b1)

b16b2⇐=

b1
k2

b2
k1

t1 t2

t3

(−∞ & b2) & b1

b1>b2=⇒

b2
k1

t1

b1
k2

t2 t3

−∞ & (b2 & b1)

Figure 6: A single rotation to the right (−∞ represents the winner; b1 6 b2 is shorthand for prio b1 6 prio b2).

that whenever a player enters the output list, we must addi-
tionally check all the players who have lost to this particular
player. Consider the pennant of Figure 3. If Lennart is se-
lected, we must check Phil, Erik, and Mary. If Phil is also
selected, we must additionally check Simon and Richard.

The structure becomes more apparent if we turn the bi-
nary semi-heap into a multiway heap. The dominated sub-
trees become children and the non-dominated subtrees be-
come siblings. Figure 7 displays the tree thus obtained. This
transformation is an instance of what is known as the nat-
ural correspondence between binary trees and forests, see
Knuth [12].

To simplify the analysis let us assume that the original
trees are perfectly balanced as in our example, so that we
have a total number of n = 2h bindings. In this special case
we obtain as the result of the transformation a so-called
binomial heap [21]. Now, in a binomial heap with n = 2h

elements, we have one node with h subtrees (namely the
root), 20 nodes with h − 1 subtrees, 21 nodes with h − 2
subtrees, . . . , 2h−2 nodes with 1 subtree, and 2h−1 nodes
with 0 subtrees. Summing up and adding one for the root
we obtain a total of n nodes:

n = 1+h+20 · (h−1)+21 · (h−2)+ · · ·+2h−2 ·1+2h−1 ·0.

Using the binary logarithm we can rewrite the above identity
into the following form:

n = 1 + h +

n−1X
k=1

(h− 1− blg kc).

On the right-hand side we have a sum with n+1 summands.
Now, if we only sum up the first r + 1 summands, we ob-
tain the desired maximum number of successors of r nodes.
Consequently, the worst-case running time of at-most is pro-
portional to

1 + h +

r−1X
k=1

(h− 1− blg kc),

for 1 < r 6 n. To estimate the asymptotic growth of this
function we use the formula

mX
k=1

blg kc = (m + 1)blg(m + 1)c − 2blg(m+1)c+1 + 2

and calculate

1 + h +

r−1X
k=1

(h− 1− blg kc)

= 1 + h + (r − 1)(h− 1)− (rblg rc − 2blg rc+1 + 2)

= r lg n− r − rblg rc+ 2blg rc+1

= r(lg n− lg r) + Θ(r).

Thus, if r is small, we have a logarithmic running time. The
running time eventually becomes linear as r approaches n.

Let us conclude the section by noting that priority search
pennants answer range queries less efficiently than priority
search trees, which support them in Θ(log n + r) time [5].
The reason is simply that the heap property is stronger than
the semi-heap property: in the case of binary heaps at most
two additional elements must be checked for every element
that enters the output list. As an aside, this also shows
that binomial heaps, which are essentially sequences of semi-
heaps [8], are less well-suited for answering range queries.

8. RELATED WORK

Priority search queues.We have already commented on
the relationship between priority search pennants and Mc-
Creight’s priority search trees [14]. Let us briefly summarize
the main points. Priority search trees are restricted to bal-
ancing schemes where the number of rotations per update
is bounded by a constant. By contrast, our methods works
with arbitrary balancing schemes. The asymptotic running
times of the finite map and the priority queue operations
are the same for both approaches. However, priority search
trees support range queries more efficiently.

As an aside, priority search trees should not be confused
with cartesian trees or treaps, which are also a combination
of search trees and priority queues [22]. In a priority search
tree each node is labelled with two keys, the key of the
binding and an additional split key, whereas in a treap the
key of the binding serves as the split key, which completely
determines the structure of the treap.

Tournament trees and pennants.Tournament trees and
loser trees already appear in Knuth‘s TAOCP series [13].
The term pennant was coined by Sack and Strothotte [20] to
denote topped, perfectly balanced trees (we do not require
the trees to be perfectly balanced though). Pennants are
widespread: Sack and Strothotte employ them to design
algorithms for splitting and merging heaps in the form of
left-complete binary trees, Okasaki [15] uses pennants as
a fundamental building block for data structures modelled
after number systems, pennants underly binomial heaps [8],
and they are useful for analysing red-black trees [7].

Dijkstra’s algorithm. Using priority search queues we were
able to implement Dijkstra’s single-source shortest-paths al-
gorithm in a purely functional way. Previous formulations
like that of King [11] relied in an essential way on stateful
computations. King writes:

. . . if a purely function solution exists for these
algorithms [Dijkstra’s and Kruskal’s] it will prob-
ably involve using a state-encapsulating combi-
nator.

Perhaps surprisingly, by using a different abstract data type—
priority search queues instead of priority queues—we obviate
the need for state. We feel that the resulting code is much
clearer than the state-based formulation.

Views. Views have originally been introduced by Wadler
[23]. Later the idea was fleshed out into a proposal for an
extension to Haskell [4]. Okasaki slightly simplified the pro-
posal and adapted it to Standard ML [16]. A recent paper
by the same author [18], where Okasaki strongly advocates
the use of views, revived my interest in this language feature.

9. CONCLUSION
Priority search queues are an amazing combination of fi-

nite maps and priority queues in that they support both
dictionary and priority queue operations. Building upon
the metaphor of a knockout tournament we have developed
a simple, yet efficient implementation technique for this ab-
stract data type. In developing the code the concept of views
was tremendously helpful: views enhanced both the read-
ability and the modularity of the code. We have presented

Warren 8

Simon 5 Richard 7 Charles 4

Phil 3 Erik 2 Mary 6

Lennart 1

Figure 7: The multi-way heap corresponding to the binary semi-heap of Figure 3.

two applications of priority search queues: a purely func-
tional implementation of Dijkstra’s single-source shortest-
paths algorithm and an efficient implementation of the first-
fit heuristics for the bin packing problem. We hope to see
further applications in the future.

10. REFERENCES
[1] S. Adams. Functional Pearls: Efficient sets—a balancing

act. J. Functional Programming, 3(4):553–561, October
1993.

[2] G. Adel’son-Vel’skĭı and Y. Landis. An algorithm for the
organization of information. Doklady Akademiia Nauk
SSSR, 146:263–266, 1962. English translation in Soviet
Math. Dokl. 3, pp. 1259–1263.

[3] W. Braun and M. Rem. A logarithmic implementation of
flexible arrays. Memorandum MR83/4, Eindhoven
University of Technology, 1983.

[4] W. Burton, E. Meijer, P. Sansom, S. Thompson, and
P. Wadler. Views: An extension to Haskell pattern
matching. Available from
http://www.haskell.org/development/views.html, 1996.

[5] O. Fries, K. Mehlhorn, S. Näher, and A. Tsakalidis. A
log log n data structure for three-sided range queries.
Information Processing Letters, 25(4):269–273, June 1987.

[6] L. J. Guibas and R. Sedgewick. A dichromatic framework
for balanced trees. In Proceedings of the 19th Annual
Symposium on Foundations of Computer Science, pages
8–21. IEEE Computer Society, 1978.

[7] R. Hinze. Constructing red-black trees. In C. Okasaki,
editor, Proceedings of the Workshop on Algorithmic
Aspects of Advanced Programming Languages,
WAAAPL’99, Paris, France, pages 89–99, September
1999. The proceedings appeared as a technical report of
Columbia University, CUCS-023-99, also available from
http://www.cs.columbia.edu/~cdo/waaapl.html.

[8] R. Hinze. Functional Pearl: Explaining binomial heaps.
J. Functional Programming, 9(1):93–104, January 1999.

[9] R. Hinze. A simple implementation technique for
priority search queues. Technical report, UU-CS-2001-09,
Universiteit Utrecht, March 2001.

[10] S. Huddleston and K. Mehlhorn. A new data structure for
representing sorted lists. Acta Informatica, 17:157–184,
1982.

[11] D. King. Functional Programming and Graph Algorithms.
Ph.d. thesis, Department of Computer Science, University
of Glasgow, March 1996.

[12] D. E. Knuth. The Art of Computer Programming,
Volume 1: Fundamental Algorithms. Addison-Wesley
Publishing Company, 3rd edition, 1997.

[13] D. E. Knuth. The Art of Computer Programming,
Volume 3: Sorting and Searching. Addison-Wesley
Publishing Company, 2nd edition, 1998.

[14] E. M. McCreight. Priority search trees. SIAM Journal on
Computing, 14(2):257–276, May 1985.

[15] C. Okasaki. Purely Functional Data Structures. Cambridge
University Press, 1998.

[16] C. Okasaki. Views for Standard ML. In The 1998 ACM
SIGPLAN Workshop on ML, Baltimore, Maryland, pages
14–23, September 1998.

[17] C. Okasaki. Functional Pearl: Red-Black trees in a
functional setting. J. Functional Programming,
9(4):471–477, July 1999.

[18] C. Okasaki. Breadth-first numbering: lessons from a small
exercise in algorithm design. ACM SIGPLAN Notices,
35(9):131–136, September 2000.

[19] S. Peyton Jones and J. Hughes, editors. Haskell 98 — A
Non-strict, Purely Functional Language, February 1999.
Available from http://www.haskell.org/definition/.

[20] J.-R. Sack and T. Strothotte. A characterization of heaps
and its applications. Information and Computation,
86(1):69–86, May 1990.

[21] J. Vuillemin. A data structure for manipulating priority
queues. Communications of the ACM, 21(4):309–315, 1978.

[22] J. Vuillemin. A unifying look at data structures.
Communications of the ACM, 23:229–239, 1980.

[23] P. Wadler. Views: a way for pattern matching to cohabit
with data abstraction. In Fourteenth Annual ACM
SIGACT-SIGPLAN Symposium on Principles of
programming languages, 1987, pages 307–313. ACM Press.

