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Abstract

The abstract data typeone-sided flexible array, also called random-
access list, supports look-up and update of elements and can grow
and shrink at one end. We describe a purely functional implemen-
tation based on weight-balanced multiway trees that is both simple
and versatile. A novel feature of the representation is that the run-
ning time of the operations can be tailored to one’s needs—even
dynamically at array-creation time. In particular, one can trade
the running time of look-up operations for the running time of up-
date operations. For instance, if the multiway trees have a fixed
degree, the operations takeΘ(log n) time, wheren is the size of
the flexible array. If the degree doubles levelwise, look-up speeds
up toΘ(

√
logn) while update slows down toΘ(2

√
logn). We show

that different tree shapes can be conveniently modelled after mixed-
radix number systems.
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1 Introduction

One-sided flexible arrays, also called random-access lists, are a hy-
brid of arrays and lists: they support array-like operations such
as look-up and update of elements and list-like operations such as
cons, head, andtail. Flexible arrays are typically used when effi-
cient random access is required and the arrays are used in a non-
single threaded manneror when the size of the arrays varies dy-
namically. A variety of implementations is available. Braun trees
[11], for instance, support all operations inΘ(log n) time. An unri-
valled data structure is the skew binary random-access list [15, 16],
which provides logarithmic array operations and constant time list
operations.

A common characteristic of the tree-based implementations is the
logarithmic time bound for the look-up operation. By contrast, pure
functional arrays as to be found in the Haskell standard library [19]
support constant-time look-up. On the negative side, updating a
‘real’ array is prohibitively expensive as it takes time linear in the
size of the array. This paper describes an alternative, purely func-
tional data structure that mediates between the two extremes.

The data structure itself is quite simple: we employ multiway trees
where each node consists of an array of elements and an array of
subtrees. Thus, our implementation is bootstrapped from an exist-
ing implementation of arrays. The base array type can be chosen
at will: it may be a real array, an array of bounded size, a Braun
tree, or even an ordinary list. Of course, different choices result in
different running times of the bootstrapped operations.

The performance is furthermore influenced by the size of the nodes.
Consider bootstrapping from an array with constant time access and
linear time update. If the nodes have a fixed degree, then the opera-
tions takeΘ(log n) time. However, if the degree doubles levelwise,
then look-up speeds up toΘ(

√
logn) while update slows down to

Θ(2
√

logn). A pleasant feature of our implementation is that the
structure of a multiway tree is only determined when an array is
first created. Much like an egg cell the initial array incorporates the
blue print for its future development. We show that a large class
of tree shapes can be conveniently modelled after so-called mixed-
radix number systems. By choosing an appropriate number system
bootstrapped arrays can be tuned for single-threaded or persistent
use, for monotonic (arrays may only grow) or non-monotonic use.

The rest of the paper is structured as follows. Sec. 2 introduces the
abstract data type of one-sided flexible arrays. Sec. 3 defines multi-
way trees and describes the implementation of the basic operations.
Sec. 4 deals with the creation of arrays and determines the perfor-
mance of bootstrapped arrays for different choices of tree shapes.
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infixl 9 !

classArray awhere
-- array-like operations

(!) :: a x→ Int→ x
update :: (x→ x)→ Int→ a x→ a x

-- list-like operations
empty :: a x→ Bool
size :: a x→ Int
nil :: a x
copy :: Int→ x→ a x
cons :: x→ a x→ a x
head :: a x→ x
tail :: a x→ a x

-- mapping functions
map :: (x→ y)→ (a x→ a y)
zip :: (x→ y→ z)→ (a x→ a y→ a z)

-- conversion functions
list :: a x→ [x]
array :: [x]→ a x

Figure 1. Signature of one-sided flexible arrays.

Sec. 5 shows how to implement additional operations such as con-
verting from and to lists. Sec. 6 presents preliminary measurements
(micro-benchmarks) comparing multiway trees to other implemen-
tations of flexible arrays. Finally, Sec. 7 reviews related work and
Sec. 8 concludes.

2 One-sided flexible arrays

Fig. 1 lists the signature of one-sided flexible arrays, phrased as
a Haskell type class. The operations can be roughly divided into
four categories: array-like operations (‘!’ and update), list-like op-
erations (empty, size, nil, copy, cons, head, andtail), mapping func-
tions (mapandzip), and conversion functions (list andarray). Most
of the operations should be self-explanatory, so we content our-
selves with describing the less common ones. The array-operation
updateapplies its first argument to the array element at the given
position and returns the modified array. The functioncopy n xcre-
ates an array of sizen that containsn copies ofx. App. A contains
a reference implementation using lists.

Since we usemapandzip quite heavily in the sequel, we adopt the
following notational convenience: we write bothmap f andzip f
simply asf ∗ (unless there is danger of confusion).

3 Multiway trees

The data type of multiway trees is parameterized by the type of the
base arraya and by the element typex.

data Tree a x = 〈a x,a (Tree a x)〉
A node〈xs, ts〉 is a pair consisting of an arrayxsof elements, called
theprefix, and an arrayts of subtrees.

In what follows we show how to turnTree a into an instance of
Array provided thata is already an instance.

instance(Array a)⇒ Array (Tree a) where

We require the multiway trees to satisfy a number of invariants. But,
rather than stating the conditions from the outset, we will introduce
them as we go along.

3.1 List-like operations

Let us start with the list-like operations since they will determine
the way indexing is done. The idea for consing elements to an array
is as follows: first fill up the element array in the root node until it
contains as many elements as there are subtrees. Then, if the root is
full up, distribute the elements evenly among the subtrees and start
afresh.

cons x〈xs, ts〉
| size xs<size ts = 〈cons x xs, ts〉
| otherwise = 〈cons x nil,cons∗ xs ts〉

To make this algorithm work, we have to maintain the following
invariant.

Invariant 1: for all nodes〈xs, ts〉:
size xs6 size ts ∧ 16 size ts.

The number of elements must not exceed the number of subtrees.
Furthermore, each node must contain at least one subtree so that
the second line ofconscreates a legal node. Clearly, this invariant
requiresnon-strict evaluationas the trees are inherently infinite. We
will come back to this aspect when we study the creation of arrays
in Sec. 4. For the moment, just note thatconsnever changes the
number of subtrees.

Theconsoperation maintains a second invariant: since the elements
are distributed evenly among the subtrees, each subtree contains
the same number of elements (denoted|t|). In other words, the
multiway trees are perfectlyweight-balanced.

Invariant 2: for all nodes〈xs,array [t0, . . . , tn ]〉:
|t0|= · · ·= |tn|.

Invariant 1 implies that the array of subtrees is never empty. This
raises the question, how we can effectively check whether a given
tree is empty. We simply agree upon that a tree is empty if and only
if the prefix is empty.

Invariant 3: for all nodest = 〈xs, ts〉:
|t|= 0⇐⇒ empty xs.

This gives a particularly simple implementation ofempty.

empty〈xs, ts〉 = empty xs

The definition ofsizebuilds upon all three invariants.

size〈xs, ts〉
| empty xs = 0
| otherwise = size xs+size ts∗size(head ts)

Note thatsizetakes time linear in theheightof the tree.

Since a non-empty tree has a non-empty prefix, accessing the first
element of an array is straightforward.

head〈xs, ts〉
| empty xs = error "head: empty array"
| otherwise = head xs
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Figure 2. Indexing multiway trees.

Thetail operation is essentially the inverse ofcons.

tail 〈xs, ts〉
| empty xs = error "tail: empty array"
| size xs>1 = 〈tail xs, ts〉
| empty(head ts) = 〈nil, ts〉
| otherwise = 〈head∗ ts, tail∗ ts〉

Note that we have to be careful to return an empty array if the argu-
ment array has size1 (third equation).

3.2 Array-like operations

The list-like operations have been carefully crafted so that the array
operations can be implemented efficiently. To see how indexing
works consider the evolution of an initially empty array: After the
first overflow, ther-th subtree contains a single element, namely
the one at positions+ r, wheres is the size of the prefix. After
the second overflow, it contains two elements, the ones at positions
s+ r and s+ b+ r, whereb is the total number of subtrees. In
general, afterq overflows it comprises theq elements at positions
s+ 0∗b+ r, s+ 1∗b+ r, . . . , s+(q−1) ∗b+ r. Fig. 2 illustrates
the situation. The first row is the prefix of the array; each column
of the matrix below corresponds to one subtree. Reading from left
to right and from top to bottom we obtain the elements of the array
ordered by index.

To determine the location of thei-th element in a given multiway
tree, we first check whether the element is contained in the prefix. If
this is not the case, then the remaindermod(i−s) b determines the
subtree where the element is to be found and the quotientdiv (i−
s) b determines the position within the subtree.

〈xs, ts〉 ! i
| empty xs = error "(!): index out of range"
| i <size xs = xs! i
| otherwise = (ts! r) ! q
where(q, r) = divMod(i−size xs) (size ts)

Note that different occurrences of ‘!’ refer to different instances of
the overloaded operation: in(ts! r) ! q the first occurrence operates
on the base array while the second constitutes the recursive call.

The update operation is implemented analogously.

update f i〈xs, ts〉
| empty xs = error "update: index out of range"
| i <size xs = 〈update f i xs, ts〉
| otherwise = 〈xs,update(update f q) r ts〉
where(q, r) = divMod(i−size xs) (size ts)

4 Array creation

The shape of multiway trees and consequently the running time of
the operations is solely determined by the array creation functions
nil, copy, andarray. Conceptually, we may think of an initial array
as an infinite tree, whose branching structure is fixed and which will
be populated through repeated applications of theconsfunction. An
initial array is very much like an egg cell in that it incorporates the
blueprint for its future development.

That said, it becomes clear that there is no single collection of con-
structor functions. Rather, each possible tree shape gives rise to
one collection. (Of course, for the instance declaration we have to
commit ourselves to one particular, yet arbitrary collection of ar-
ray creation functions.) Through suitable definitions the user can
adjust the running time of the array operations to her needs—even
dynamically at array-creation time.

As an aside, note that we do not employ lazy evaluation in an es-
sential way—it is more a matter of convenience. The proposed
data structure could be easily implemented in a strict language just
by adding a suitable constructor for empty nodes. Of course, the
empty constructor has to incorporate information about the ‘future’
branching structure.

To be able to analyze the running times reasonably well, we make
one further assumption: we require that nodes of the same level
have the same size. This is quite a reasonable requirement if the
elements are accessed with equal probability. If the access char-
acteristic is different, a less regular layout may be advantageous.
Given this assumption the structure of trees can be described using
a special number system, the so-calledmixed-radix system[13]. A
mixed-radix numeral is given by a sequence of digitsd0, d1, d2,
. . . (determining the size of the element arrays) and a sequence of
basesb0, b1, b2, . . . (determining the size of the subtree arrays).

[
d0,d1,d2, . . .
b0,b1,b2, . . .

]
= ∑

i=0
di ∗wi wherewi = bi−1∗ · · · ∗b1 ∗b0

In our case, the bases are positive numbers16 bi and we require the
digits to lie in the range06 di 6 bi (cf Invariant 1). Furthermore,
we requiredi = 0 =⇒ di+1 = 0 (cf Invariant 3). In other words, if
we ignore trailing zeros, then the digits must lie in the range16
di 6 bi . Perhaps surprisingly, each natural number has a unique
representation for a fixed sequence of bases. Mixed-radix numerals
satisfy the appealing recursion equation

[
d0,d1,d2, . . .
b0,b1,b2, . . .

]
= d0 +b0 ∗

[
d1,d2, . . .
b1,b2, . . .

]
,

which corresponds nicely to the definition ofsize. Likewise,cons
corresponds to incrementing a mixed-radix numeral andtail to
decrementing one. In Haskell, we can represent mixed-radix nu-
merals by a list of pairs:

type Mix = [(Int, Int)].

Given a list of bases we can quite easily convert a natural number
into a mixed-radix number.

type Bases = [Int ]
encode :: Bases→ (Int→Mix)
encode(b: bs) n
| n 0 = zip(repeat0) (b :bs)
| otherwise = (r +1,b) :encode bs q
where(q, r) = divMod(n−1) b
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From a list of bases we can also construct an empty array.

gnil :: (Array a)⇒ Bases→ Tree a x
gnil (b :bs) = 〈nil,copy b(gnil bs)〉

The functiongnil can be seen as agenericarray creation function
that is indexed by a mixed-radix number system. In a similar vein
we can define a genericcopy function that creates an array of a
certain size.

gcopy :: (Array a)⇒Mix→ x→ Tree a x
gcopy((d,b) : σ) x = 〈copy d x,copy b(gcopyσ x)〉

The array creation functions for a fixed sequence of basesbs are
then given bynil = gnil bs andcopy n x= gcopy(encode bs n) x
(the creation functionarray will be dealt with in Sec. 5.3).

Before we look at particular examples of mixed-radix systems, let
us first study the running time of look-up and update operations in
the general setting. To simplify the analysis, we pretend to work in
a strict setting. Furthermore, we assume that the arrays are used in
a single-threaded manner (Sec. 4.5 deals with persistent use). The
dominant factor of array look-up is the height of the multiway tree.
Let H(n) be the height of thetallest tree with sizen (counting only
non-empty nodes). The running time of ‘!’ andupdateis

T!(n) =
H(n)−1

∑
i=0

T̄!(bi)

Tupdate(n) =
H(n)−1

∑
i=0

T̄update(bi),

whereT̄op is the running time ofop on base arrays. Actually, both
operations are slightly faster: the number of accesses is less than
the height if the indexed element is located in a prefix high up the
tree.

In many cases, the height function can be conveniently derived from
the size function. LetS(h) be the size of thesmallesttree with
heighth. The two functions are related by

S(h)6 n⇐⇒ h6 H(n). (1)

In math speak,S:N→ N andH:N→ N form aGalois connection
between the orders(N,6) and (N,6). In the case of multiways
trees,S(h) equals the mixed-radix numeral whose firsth digits are
ones.

S(h) =
[
1, . . . ,1, 0, . . .
b0, . . . ,bh−1,bh, . . .

]
=

h−1

∑
i=0

wi .

Turning to theconsoperation let us first note that itsworst-case
running time is proportional to the size of the tree: if we have a
cascading carry as in

[
b0, . . . ,bn−1,0, . . .
b0, . . . ,bn−1,bn, . . .

]
+1 =

[
1, . . . ,1, 1, 0, . . .
b1, . . . ,bn−1,bn,bn+1, . . .

]
,

then the whole tree must be rearranged. However, this worst-case
only happens once in a while. We obtain a much better estimate of
the running time if we conduct anamortized analysis. The amor-
tized running-time ofconsis given by

Tcons(n) =
1
n

H(n)−1

∑
i=0

n
wi

wi T̄cons(bi)

=
H(n)−1

∑
i=0

T̄cons(bi).

The formula on the first line can be understood as follows: the sum
calculates the costs ofn successiveconsoperations. If we divide the
result byn, we obtain the amortized running-time. Each summand
describes the total costs at leveli: the i-th level is touched every
n/wi steps; if it is touched, thenwi nodes must be rearranged; and
the rearrangement of one node takesT̄cons(bi) time in the worst-
case. Perhaps surprisingly, the amortized running time ofconsis
given by the same formula as the worst-case running time of look-
up and update. Note, however, that the analysis assumes that there
are no interferingtail operations. Otherwise, cascading carries or
borrows may occur in every step. Sec. 4.5 deals with the general
case.

In the sequel, we study three instances of mixed-radix systems. For
each instance, we will analyze the asymptotic growth of the sum

∑H(n)−1
i=0 T̄op(bi) for different choices of̄Top. Keep in mind that this

sum captures theworst-caserunning time of ‘!’ andupdate, but the
amortizedrunning time ofcons.

4.1 b-ary trees

The simplest case of a mixed-radix number system is thepositional
systemwhere the radix is the same for all positions.

[
d0,d1,d2, . . . ,dn, . . .
b, b, b, . . . ,b, . . .

]

It is worth noting, however, that this number system is still some-
what unusual as we disallow the digit zero except in ‘rightmost’
positions—we have a so-calledzerolessrepresentation [16]. As an
example, in radix2 the decimal number27 is 11220. . . rather than
110110. . ..

Since the radix is fixed, the bootstrapped arrays are justb-ary trees.
The array creation functions are given by

bary :: Int→ Bases
bary b = repeat b

nil1 b = gnil (bary b)
copy1 b n x = gcopy(encode(bary b) n) x.

Actually, in this simple case the definition ofnil1 can be slightly
improved. The following implementation uses only constant space.

nil1 b = t where t = 〈nil,copy b t〉

Turning to the performance, the size of the smallest tree of heighth
is given by the sum of the geometric progression:∑n−1

i=0 bi = (bn−
1)/(b− 1). The height function can be easily calculated fromS
using relation (1).

S(h) = (bh−1)/(b−1)
H(n) = blogb(n(b−1)+1)c

For the running time of the bootstrapped operations we calculate

Top(n) =
H(n)−1

∑
i=0

T̄op(bi)

= blogb(n(b−1)+1)c∗ T̄op(b)

≈ lgn∗ T̄op(b)/ lgb,

wherelg is the binary logarithm. As an example, assume that the
base operation takes logarithmic timēTop(n) = c∗ lgn. In this case,
the running time of the bootstrapped operation,Top(n) = c∗ lgn, is
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exactly the same. The formula above shows that the dependence
of the bootstrapped operation on the base operation is linear: if we
improve the running time of the base operation by a constant factor,
then the bootstrapped operation speeds up by exactly the same fac-
tor. It is instructive to take a look at some concrete figures. Say, we
want to represent an array of size228 = 268,435,456 elements.1

The following table displaysTop(228) for different choices ofb and
T̄op.

b 2 4 16 256 1024
T̄op(n) = 1 28 14 7 4 3
T̄op(n) = lgn 29 29 29 29 29
T̄op(n) = n 29 43 106 781 2302

If we bootstrap from a real array and if we use radix-256trees, then
we need at most4 steps to access an arbitrary element. Updating
an element is considerably more expensive: roughly800steps are
required on an average.

Of course, if we abstract away from multiplicative constants, we
obtain logarithmic asymptotic running times irrespective of the un-
derlying base array.

base array bootstrapped array
Θ(1) Θ(logn)
Θ(logn) Θ(logn)
Θ(n) Θ(logn)

4.2 Arithmetic progression trees

Can we improve upon the logarithmic worst-case complexity? The
answer is an emphatic “Yes!”. The idea is to steadily increase the
size of nodes as we move down a tree: the root node hasα descen-
dants, the nodes on the second level haveα + β descendants, the
nodes on the third levelα+2β and so forth.

[
d0,d1, d2, . . . ,dn, . . .
α, α+β,α+2β, . . . ,α+nβ, . . .

]

Since the radices form an arithmetic progression, we call the cor-
responding treesarithmetic progression trees. The array creation
functions enjoy straightforward definitions.

arithmetic :: Int→ Int→ [Int ]
arithmeticα β = α :arithmetic(α+β) β
nil2 α β = gnil (arithmeticα β)
copy2 α β n x = gcopy(encode(arithmeticα β) n) x

For the asymptotic analysis let us consider one particular instance
of arithmetic progression trees fixingα = β = 1. For this choice, the
mixed-radix number system specializes to a variant of the so-called
factorial number system(the standard factorial number system re-
quires the digits to lie in the range06 di < bi = i +1).

[
d0,d1,d2,d3,d4, . . .
1, 2, 3, 4, 5, . . .

]

The decimal number 271965, for instance, is represented by
123214650. . .. The size of the smallest tree is given by the so-
called left factorial function !n = ∑n−1

k=0 k!. The height function is

1If we assume that every element fits into 64 bits, then a con-
ventional array of that size would require 1GB of main memory.

roughly the inverse of the left factorial function denoted ¡n.

S(h) = !h

¡n−16 H(n)6 ¡n

Let n¡ be the inverse of the factorial function. Note thatn¡ =
Θ(logn/ log logn). Since (h− 1)! 6!h 6 h! and consequently
n¡6 ¡n6 (n+1)¡, we have

H(n) = Θ(logn/ log logn).

Using the summation formulas∑n
i=0 logi = Θ(nlogn) and∑n

i=0 i =
Θ(n2) we can estimate the running time of the bootstrapped opera-
tions.

base array bootstrapped array
Θ(1) Θ(logn/ log logn)
Θ(logn) Θ(logn)
Θ(n) Θ((logn)2/(log logn)2)

Sincelogn/ log logn grows more slowly thanlogn, we have beaten
the logarithmic look-up time of ‘traditional’ tree-based implemen-
tations. Figure 3 inserts the functions above into the asymptotic
hierarchy. Alas, the functionlog logn grows very, very slow, so, in
practice, the speed-up boils down to constant factor.

4.3 Geometric progression trees

We have seen in the previous section that array look-up speeds up
if we steadily increase the size of nodes. Now, instead of enlarging
the nodes by a constant amount, we can alternatively enlarge them
by a constantfactor: the root node hasα descendants, the nodes on
the second level haveαβ descendants, the nodes on the third level
αβ2 and so forth.

[
d0,d1, d2, . . .dn, . . .
α, αβ,αβ2, . . .αβn, . . .

]

The radices now form the elements of a geometric progression. Ac-
cordingly, the corresponding trees are calledgeometric progression
trees. Here are the array creation functions.

geometric :: Int→ Int→ [Int ]
geometricα β = α :geometric(α∗β) β
nil3 α β = gnil (geometricα β)
copy3 α β n x = gcopy(encode(geometricα β) n) x

Turning to the asymptotic analysis we will again consider one par-
ticular instance fixingα = 1 andβ = 2. Sincewi = 2i(i−1)/2, the
size function is

S(h) =
n−1

∑
i=0

2i(i−1)/2.

The size of a geometric progression tree is dominated by the size of
the nodes on the lowest level. We have

2(h−1)(h−2)/26 S(h)6 2∗2(h−1)(h−2)/2.

A little calculation yields the following estimation.
√

2lgn−16 H(h)6√
2lgn+2. (2)

Consequently,

H(h) = Θ(
√

logn).
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log logn≺
√

logn≺ logn/ log logn≺ logn≺ (logn)2/(log logn)2 ≺ 2
√

logn ≺ n

Figure 3. Logarithmico-exponential functions ranked by order of growth.

Using (2) we can furthermore determine the running time of the
bootstrapped operations.

base array bootstrapped array
Θ(1) Θ(

√
logn)

Θ(logn) Θ(logn)
Θ(n) Θ(2

√
logn)

As to be expected, geometric progression trees are more extreme
than arithmetic progression trees: look-up is considerably faster but
update is also considerably slower (see also Figure 3).

4.4 Fat nodes

Using mixed-radix number systems we can nicely steer the out-
degree of nodes, that is, the size of the subtree arrays. However,
the size of the element arrays escapes our control, since the size
is determined by the overall number of elements. In the worst case
the prefixes are singletons, whereas in the best case they are as large
as the subtree arrays. We use the terms ‘worst case’ and ‘best case’
because large prefixes are generally preferable as they improve both
locality andspace usage.

As an example, consider representing an array of1099 elements
using geometric progression trees (α = 1 andβ = 2). The tree cor-
responding to

[
1,2,4,8,16,0, 0, . . .
1,2,4,8,16,32,64, . . .

]

consumes1174cells (simply summing up the array sizes). Now, if
we add one element, we obtain

[
1,1,1,1,1, 1, 0, . . .
1,2,4,8,16,32,64, . . .

]
,

which consumes2199 cells (87% more). Furthermore, adjacent
array elements are always located in different parts of the tree. Note
in this respect, that indexing works in little-endian order (from least
to most significant bits).

Now, to ensure that the prefixes are reasonably large, we can simply
use larger digits. Currently, we require the significant digits to lie
in the range16 di 6 bi . We generalize this condition by shifting
the range to

δ∗bi +16 di 6 (δ+1)∗bi

for some fixed natural numberδ. Of course, to be able to represent
all natural numbers we allow the rightmost significant digit to be
smaller thanδ∗bi +1.

The following function converts a natural number into the new
number system given someδ and a list of bases.

encode :: Int→ Bases→ (Int→Mix)
encodeδ (b: bs) n
| n<dmin = (n,b) : zip(repeat0) bs
| otherwise = (r +dmin,b) : encodeδ bs q
wheredmin = δ∗b+1

(q, r) = divMod(n−dmin) b

As an example, fixingδ = 16we have (1099+1 = 1100)

[
17,34,68,114,0, . . .
1, 2, 4, 8, 16, . . .

]
+1 =

[
17,33,65,115,0, . . .
1, 2, 4, 8, 16, . . .

]
,

Though there is a cascading carry, the second tree requires only one
additional memory cell (1110versus1111cells).

On the downside, since the prefixes are larger,consing slows down
by a constant factor. The asymptotic running times are not affected,
though. Note that the list operations must be slightly adapted to
work with the new number system (the array operations work with-
out change). The details are left to the reader.

4.5 Redundant and lazy number systems

Recall that the amortized analysis ofconsassumed that there were
no interleavingconsandtail operations. If both operations are al-
lowed, thencons’s running time degrades toΘ(n). Consider, for
instance, an array that cycles between

[
b0, . . . ,bn−1,0, . . .
b0, . . . ,bn−1,bn, . . .

]
and

[
1, . . . ,1, 1, 0, . . .
b1, . . . ,bn−1,bn,bn+1, . . .

]
.

This problem is typical of non-redundant number systems, where
each number has a unique representation. The cure is to switch to a
redundant number system, for instance, by using digits in the range
16 di 6 bi +1.

A similar performance problem shows up if the arrays are used per-
sistently. Consider an array of size

[
b0, . . . ,bn−1,0, . . .
b0, . . . ,bn−1,bn, . . .

]

and suppose that we repeatedlyconselements to this array. Again,
constakes time linear in the size of the array. In this case,lazy eval-
uationsaves the day. If we switch to a lazy setting (or add explicit
delays to the definitions), then the calculated time bounds hold re-
gardless of whether the arrays are used persistently. For a more in-
depth treatment of amortization, persistence and lazy evaluation the
interested reader is referred to Okasaki’s excellent textbook [16].

5 Mapping and conversion functions

5.1 Mapping functions

The implementation ofmapandzip is entirely straightforward.

map f 〈xs, ts〉 = 〈f ∗ xs,(map f)∗ ts〉
zip f 〈xs1, ts1〉 〈xs2, ts2〉 = 〈f ∗ xs1 xs2,(zip f)∗ ts1 ts2〉

Note thatzip expects its arguments to have the same size.
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5.2 Array destruction

The array conversion functionlist makes use of the following de-
structor functions.

elems :: (Array a)⇒ Tree a x→ [x]
elems〈xs, ts〉 = list xs

subs :: (Array a)⇒ Tree a x→ [Tree a x]
subs〈xs, ts〉 = list ts

Recursive solution

Here is the vanilla implementation oflist: the subtrees are flattened
recursively; the lists thus obtained are riffled (cf Fig. 2) and the
result is appended to the prefix.

list :: (Array a)⇒ Tree a x→ [x]
list t
| empty t = [ ]
| otherwise = elems t++ riffle (list∗ (subs t))

The auxiliary functionriffle mergesn lists of lengthm into a single
list of lengthmn.

riffle :: [[x]]→ [x]
riffle x
| all empty x = [ ]
| otherwise = head∗ x++ riffle (tail∗ x)

Note thatriffle = concat· transpose.

The recursive implementation oflist takessuper-lineartime in gen-
eral. As an example, listifyingb-ary trees has a running time of
Θ(nlogn).

Iterative solution

If we know that the nodes of one level have the same size (so that
there is an underlying number system), thenlist can be made to
run in linear time. The principle idea is to transform the given tree
levelwise by working on a list of subtrees.

list :: (Array a)⇒ Tree a x→ [x]
list t = ilist [t ]
ilist :: (Array a)⇒ [Tree a x]→ [x]
ilist ts
| empty(head ts) = [ ]
| otherwise = riffle (elems∗ ts)

++ ilist (riffle (subs∗ ts))

Note that the subtrees are riffled before they are passed to the recur-
sive call. It is not at all clear why and how this scheme works. For-
tunately, one can derive the iterative implementation from the re-
cursive one. However, since the derivation proceeds in a point-free
style, the calculations are relegated to an appendix (see App. B).

5.3 Array construction

The smart constructornodeneeded below is the inverse of the de-
structor functionselemsandsubs.

node :: (Array a)⇒ [x]→ [Tree a x]→ Tree a x
node xs ts = 〈array xs,array ts〉

Recursive solution

As for the other array creation functions we define agenericversion
of array that is parametric in the underlying number system. The
generic version takes as an additional argument the size of the input
list represented as a mixed-radix numeral.

garray :: (Array a)⇒Mix→ [x]→ Tree a x
garray((d,b) : σ) xs
| d 0 = gnil (b : snd∗ σ)
| otherwise = node xs1 ((garrayσ)∗ (unriffle b xs2))
where(xs1,xs2) = splitAt d xs

The helper functionunriffle nsplits a list of lengthmninto n lists of
lengthm. In a sense which is made precise in App. Bunriffle is the
inverse ofriffle.

unriffle :: Int→ [x]→ [[x]]
unriffle n xs
| empty xs = copy n[ ]
| otherwise = cons∗ xs1 (unriffle n xs2)
where(xs1,xs2) = splitAt n xs

Iterative solution

Again, we can achieve a linear time behaviour if we turn the recur-
sive solution into an iterative one. The following variant ofgarray
builds the tree levelwise.

garray :: (Array a)⇒Mix→ [x]→ Tree a x
garrayσ xs = head(iarray 1 σ xs)

iarray :: (Array a)⇒ Int→Mix→ [x]→ [Tree a x]
iarray w ((d,b) : σ) xs
| d 0 = copy w(gnil (b :snd∗ σ))
| otherwise = node∗ (unriffle w xs1)

(unriffle w(iarray (w∗b) σ xs2))
where(xs1,xs2) = splitAt (w∗d) xs

Note thatunriffle is applied only ‘locally’ before the trees of one
level are constructed. Furthermore, note that the iterative version
also improvessharing: the empty treegnil (b : snd∗ σ) is con-
structed only once being shared among all nodes on the lowest level.
That said it becomes clear that there is further room for improve-
ment. Observe that the nodes on the lowest level contain identical
subtree arrays, each of which consists ofb copies of the empty tree.
These subtree arrays can be shared, as well. The relevant laws for
improving iarray are

unriffle m(copy(m∗n) x) = copy m(copy n x)
f ∗ (copy n x) = copy n(f x).

The details of the modification are left to the reader.

6 Benchmarks

This section presents preliminary measurements comparing various
instances of multiway trees to Haskell 98 arrays,Int-indexed arrays
(starting at zero), lists, Braun trees [11], and skew binary random-
access lists [15, 16]. The programs were compiled with Version
5.04 of the Glasgow Haskell Compiler (-O2 ); the executables were
run on a Pentium III (645 MHz) with 192 MB of main memory. All
multiway tree implementations are bootstrapped fromInt-indexed
arrays using Haskell’s type class mechanism. Despite appearance,
the parameters of the different variants (b, α, β, andδ) were chosen
at will. We plan to conduct more systematic measurements in the
future.
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n = 1e3 5e3 1e4 5e4 1e5 5e5 1e6
standard array 0.05 0.37 1.38 9.25 18.95 105.08 230.48
Int-indexed array 0.05 0.27 1.29 8.00 16.08 83.57 170.98
list 1.01 23.52 121.12 – – – –
Braun tree 0.24 1.65 4.33 26.85 56.99 324.02 685.17
random-access list 0.18 1.29 3.42 21.47 46.56 263.14 567.01
b-ary (b = 28, δ = 0) 0.11 0.64 2.00 16.44 33.81 177.31 478.79
b-ary (b = 256, δ = 0) 0.07 0.49 1.65 9.59 27.71 151.63 330.90
arithmetic (α = 28, β = 4, δ = 0) 0.11 0.63 2.02 15.35 33.18 177.82 362.67
geometric (α = 6, β = 6, δ = 0) 0.10 0.62 1.89 16.23 33.24 161.52 354.16
b-ary (b = 28, δ = 32) 0.05 0.46 1.58 10.53 21.93 128.81 300.08
b-ary (b = 256, δ = 32) 0.05 0.33 1.52 9.44 19.55 114.95 245.46
arithmetic (α = 28, β = 4, δ = 32) 0.05 0.46 1.61 10.89 22.28 118.58 245.47
geometric (α = 6, β = 6, δ = 32) 0.07 0.46 1.76 10.85 22.15 130.95 272.22

Figure 4. Repeated random indexing (100∗n).

The benchmarks are so-calledmicro-benchmarks: a certain oper-
ation or a certain sequence of operations is repeated a number of
times. In the first test, an array of sizen is created and subse-
quently indexed100∗n times in a random fashion. The results of
this benchmark are displayed in Fig. 4. As to be expected, standard
arrays are the data structure of choice when only look-up is used.
Perhaps surprisingly, however, arrays are only three times faster
than skew binary random-access lists, which perform amazingly
well. Braun trees are slightly slower as they exhibit poor locality,
see [15]. The multiway tree implementations show the expected
behaviour: the larger the nodes, the better the running time. In par-
ticular, trees with fat nodes (cf Sec. 4.4) perform very well—they
consistently outperform random-access lists by a factor of two.

The second and the third benchmark feature a combination of
random indexing and consing: starting with an array of a given
size we repeatedly perform acons operation followed by 10 or
100 look-ups, respectively. The results are displayed in Fig. 5 and 6.
Random-access lists are superior up to an array size of100,000el-
ements. For larger arrays arithmetic or geometric progression trees
are preferable. Braun trees are competitive for larger trees, as well
(though this may be an artifact of lazy evaluation as not every ele-
ment is accessed). Fig. 7 and 8 display the result of the fourth and
the fifth benchmark, which test the combination of random index-
ing and updating. The results are similar to the two previous bench-
marks (perhaps slightly more in favour of bootstrapped arrays).

Of course, the measurements are far from being conclusive. There
is some indication that skew binary random-access lists are the data
structure of choice if little is known about the requirements of a par-
ticular application. If the arrays are reasonably large and if updates
are less frequent than look-ups, then multiway trees have something
to offer—in particular, as they can be adapted to the needs of an ap-
plication. As a rule of thumb, the size of the nodes or the rate of
growth should be chosen according to the look-up/update ratio.

7 Related work

The data structure of multiway trees generalizesfork-node treesin-
troduced by Hinze [9] and discovered independently by Xi (private
communication). Fork-node trees correspond to the simplest in-
stance of multiway trees, namely2-ary trees. The idea of trading
the running time of look-up for the running time of update is due to
Okasaki (private communication). Okasaki proposed to generalize
binary tries [17] ton-ary tries. Both data structures, however, do
not support list-like operations.

Virtually all implementations of flexible arrays are based on tree
structures. The first design due to Braun and Rem [2] uses bi-
nary, node-oriented trees featuring a rigid balancing scheme: for
any given node, the left subtree has sized(n−1)/2e and the right
subtree has sizeb(n−1)/2c. Braun trees support look-up and up-
date inΘ(logi) time andconsandtail in Θ(logn) time. Skew bi-
nary random-access lists [15] meet the time bound for array oper-
ations (albeit in the expected case) and allow the list operations to
be implemented inΘ(1) time. Random-access lists are sequences
of completebinary, node-oriented trees; they are modelled after the
skew-binary number system. Several variants of this data struc-
ture with different underlying number systems can be found in the
textbook [16]. Random-access lists based on binary numbers cor-
respond to the leaf trees of Dielissen and Kaldewaij [3, 4], which
are leftist left-perfect trees (the offsprings of the nodes on the right
spine form a sequence of complete leaf trees). A detailed compari-
son of these tree structures can be found in [9].

Number systems serve admirably as templates for data structures.
Various examples of this cross-fertilization can be found in the lit-
erature [21, 6, 16, 8]. To the best of the author’s knowledge the use
of mixed-radix number systems is original.

Radically different implementations are available forrigid arrays
that cannot grow or shrink.Version tree arrays[10, 1] are a blend of
association lists and ‘real’ arrays: the initial version is represented
by a mutable array; update operations build a difference list in front
of this array. Thus, updates takeΘ(1) time, but look-ups degrade
to Θ(u) time whereu is the number of updates between the original
version and the most recent one. By dynamically restructuring the
trailers look-up and update can be improved toΘ(1) for the special
case ofsingle-threaded access.

A different approach that provides better support forpersistentuse
represents an array by a pair consisting of a unique version stamp
and a pointer to a master array, whose elements are finite maps
from version stamps to associated values. The implementation by
O’Neill and Burton [18] uses splay trees [20] for the finite maps and
a version stamp scheme based on thelist order problem[5]. Their
implementation exhibitsΘ(1) bounds for single-threaded use and
Θ(logn) amortized bounds for persistent use.

A common characteristic of the two approaches above is the inter-
nal use of destructive updates. Purely functional implementations
of rigid arrays include AVL trees [14] and binary tries [17]. In fact,
since an array can be seen as a finite map from indices to values,
every implementation offinite mapswill do. Similarly, one may
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n = 1e3 5e3 1e4 5e4 1e5 5e5 1e6
standard array 5.31 26.56 – – – – –
Int-indexed array 0.07 0.25 0.55 4.51 13.56 69.65 137.37
list 0.13 0.54 2.59 24.24 – – –
Braun tree 0.04 0.09 0.14 0.56 1.00 4.21 9.13
random-access list 0.02 0.04 0.05 0.14 0.30 3.89 13.94
b-ary (b = 28, δ = 0) 0.03 0.07 0.10 0.59 0.96 3.86 11.00
b-ary (b = 256, δ = 0) 0.03 0.06 0.10 0.34 1.35 4.59 10.50
arithmetic (α = 28, β = 4, δ = 0) 0.03 0.08 0.10 0.69 0.88 3.15 8.31
geometric (α = 6, β = 6, δ = 0) 0.03 0.07 0.10 0.76 1.08 3.36 6.30
b-ary (b = 28, δ = 32) 0.06 0.12 0.16 0.51 0.83 3.81 9.24
b-ary (b = 256, δ = 32) 0.08 0.29 0.51 0.86 1.29 5.11 11.26
arithmetic (α = 28, β = 4, δ = 32) 0.05 0.11 0.15 0.71 1.10 3.85 7.84
geometric (α = 6, β = 6, δ = 32) 0.04 0.11 0.17 0.51 0.92 4.71 10.77

Figure 5. Random indexing and consing (oneconsfollowed by 10 look-ups repeated1000times).

n = 1e3 5e3 1e4 5e4 1e5 5e5 1e6
standard array 4.97 434.74 – – – – –
Int-indexed array 0.18 0.39 0.68 4.68 13.75 69.61 137.16
list 1.11 4.91 15.37 302.75 – – –
Braun tree 0.32 0.46 0.58 1.21 2.00 5.12 11.06
random-access list 0.24 0.32 0.36 0.70 0.89 5.16 14.60
b-ary (b = 28, δ = 0) 0.20 0.26 0.31 1.07 1.60 4.84 15.03
b-ary (b = 256, δ = 0) 0.16 0.23 0.27 0.69 1.76 5.26 9.71
arithmetic (α = 28, β = 4, δ = 0) 0.20 0.27 0.31 1.04 1.79 4.17 9.71
geometric (α = 6, β = 6, δ = 0) 0.20 0.27 0.31 1.34 1.75 4.89 7.31
b-ary (b = 28, δ = 32) 0.18 0.27 0.33 0.84 1.29 5.12 8.84
b-ary (b = 256, δ = 32) 0.19 0.44 0.66 1.00 1.50 6.27 13.60
arithmetic (α = 28, β = 4, δ = 32) 0.17 0.28 0.33 1.06 1.69 4.54 9.08
geometric (α = 6, β = 6, δ = 32) 0.18 0.27 0.36 0.82 1.25 5.56 11.33

Figure 6. Random indexing and consing (oneconsfollowed by 100 look-ups repeated1000times).

n = 1e3 5e3 1e4 5e4 1e5 5e5 1e6
standard array 2.64 15.76 – – – – –
Int-indexed array 0.05 0.20 0.43 4.20 13.13 67.94 133.36
list 0.26 1.72 5.23 51.70 – – –
Braun tree 0.04 0.10 0.15 0.55 1.03 4.05 8.44
random-access list 0.04 0.06 0.07 0.17 0.33 4.55 14.13
b-ary (b = 28, δ = 0) 0.03 0.07 0.13 0.61 0.95 3.41 12.68
b-ary (b = 256, δ = 0) 0.03 0.08 0.11 0.35 1.41 4.36 11.05
arithmetic (α = 28, β = 4, δ = 0) 0.04 0.08 0.12 0.70 0.93 3.02 8.37
geometric (α = 6, β = 6, δ = 0) 0.04 0.08 0.11 0.80 1.16 4.18 6.71
b-ary (b = 28, δ = 32) 0.05 0.08 0.11 0.45 0.85 3.56 7.74
b-ary (b = 256, δ = 32) 0.05 0.24 0.40 0.53 1.02 4.86 10.17
arithmetic (α = 28, β = 4, δ = 32) 0.05 0.08 0.11 0.51 0.85 4.02 7.15
geometric (α = 6, β = 6, δ = 32) 0.03 0.10 0.14 0.43 0.88 4.47 11.30

Figure 7. Random indexing and updating (one update followed by10 look-ups repeated1000times).

n = 1e3 5e3 1e4 5e4 1e5 5e5 1e6
standard array 2.24 15.17 – – – – –
Int-indexed array 0.15 0.33 0.58 4.44 13.39 67.80 133.58
list 1.40 7.16 19.09 229.30 – – –
Braun tree 0.32 0.47 0.57 1.08 1.70 5.18 9.53
random-access list 0.27 0.36 0.39 0.68 1.03 5.18 16.72
b-ary (b = 28, δ = 0) 0.21 0.27 0.31 1.03 1.52 4.94 13.62
b-ary (b = 256, δ = 0) 0.18 0.23 0.27 0.69 1.81 5.28 13.37
arithmetic (α = 28, β = 4, δ = 0) 0.21 0.28 0.31 1.22 1.77 4.17 8.01
geometric (α = 6, β = 6, δ = 0) 0.21 0.26 0.30 1.27 1.72 4.85 9.14
b-ary (b = 28, δ = 32) 0.16 0.23 0.28 0.73 1.12 4.21 9.45
b-ary (b = 256, δ = 32) 0.15 0.38 0.59 0.82 1.17 5.44 10.78
arithmetic (α = 28, β = 4, δ = 32) 0.16 0.24 0.28 0.82 1.21 3.83 7.31
geometric (α = 6, β = 6, δ = 32) 0.17 0.25 0.32 0.73 1.19 5.42 12.03

Figure 8. Random indexing and updating (one update followed by100 look-ups repeated1000times).
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adapt an implementation ofordered lists. Instances based on finger
search trees [12, 7], for example, supportcons in Θ(1) time and
allow to access or update thei-th element inΘ(logi) time.

8 Conclusion and future work

We have presented a purely functional implementation of one-
sided flexible arrays based on weight-balanced multiway trees. The
data structure is simple to implement and fully persistent. Multi-
way trees are bootstrapped from an existing implementation of ar-
rays. The performance of the underlying base array type and the
branching structure of the multiway trees determine the overall per-
formance. Both parameters can be chosen dynamically at array-
creation time. We have shown that a large class of tree shapes can
be conveniently modelled after mixed-radix number systems and
we have analysed three obvious choices (b-ary trees, arithmetic pro-
gression trees, and geometric progression trees) in detail. Prelim-
inary measurements show that multiway trees perform reasonably
well in practice.

The work described here is the end-product of several abstractions
generalizing fork-node trees [9] tob-ary trees andb-ary trees to
multiways trees based on mixed-radix number systems. Each gen-
eralization had a tremendous effect on both implementation and
presentation: without exception, the generalized operations were
simpler to implement and easier to understand than their instances.
In particular, the introduction of mixed-radix number systems uni-
fied and simplified the implementation of the array creation func-
tions.

Much is left to be done. The generality of the data structure opens
up quite a huge design space. Clearly, a more systematic explo-
ration of this space is desirable: What is the optimal tree shape for
a given look-up/update ratio? Likewise, what is the preferred shape
if the size of the array is known to lie in a certain range? To obtain
more convincing figures, we also plan to port the implementation
to other languages such as O’Caml, Standard ML, and Clean.
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A A reference implementation ofArray

The declaration below makes the list data type an instance of the
Array class. Its main purpose is to specify the intended behaviour
of the member functions.

instanceArray [ ] where
[ ] ! i = error "index out of range"
(x :xs) ! 0 = x
(x :xs) ! (i +1) = xs! i

update f i[ ] = error "index out of range"
update f0 (x : xs) = f x : xs
update f(i +1) (x : xs) = x : update f i xs

empty[ ] = True
empty(x : xs) = False

size[ ] = 0
size(x : xs) = 1+size xs

nil = [ ]
copy0 x = [ ]
copy(n+1) x = x : copy n x

cons = (:)
head(x : xs) = x

tail (x : xs) = xs

map f [ ] = [ ]
map f (x : xs) = f x : map f xs

zip f [ ] [ ] = [ ]
zip f (x : xs) (y: ys) = f x y:zip f xs ys

list = id

array = id

B Derivation of ilist

This section derives the iterative definition oflist from the straight-
forward recursive definition.

Functions

The recursive definition oflist uses lists a lot: as an intermediate
result it produces a list of lists, which is then riffled into a list of
elements. It is important to note thatriffle only works if the inner
lists have the same length. Fortunately, this property is guaranteed
by Invariant 2. Now, for the derivation it is useful, even vital to
keep track of this size information. For that reason, we replace the
ubiquitous list type[X] by tuple (or vector) types of the formXn.
In a sense, we view the type of lists as a family of tuple types.
Likewise, a list-processing function is seen as a family of functions

operating on tuples. We require the following operations.

wrap :: X→ X1

unwrap :: X1 → X

ρm,n :: (Xn)m→ Xmn

ρ̆m,n :: Xmn→ (Xn)m

catm,n :: Xm×Xn → Xm+n

uncatm,n :: Xm+n → Xm×Xn

zipn :: Xn×Yn → (X×Y)n

unzipn :: (X×Y)n → Xn×Yn

Hereρm,n denotes one instance ofriffle and ρ̆m,n denotes one in-
stance ofunriffle. For reasons of readability, we will usually omit
the second index writingρm instead ofρm,n and likewise forρ̆m,n,
catm,n anduncatm,n.

Properties

The functions satisfy a variety of properties that are needed in the
derivation.

The functions come in pairs. Since they operate on tuple types,
each operation has a natural inverse:wrap andunwrapare inverse
to each other (wrap·unwrap= id andunwrap·wrap= id), ρm,n and
ρ̆m,n, catm,n anduncatm,n, zipn andunzipn.

All the functions are polymorphic in the element type(s). As such
they enjoy quite general properties, often referred to asnaturality
laws.

f 1 ·wrap = wrap· f
f mn·ρm,n = ρm,n · (f n)m

(f n×gn) ·unzipn = unzipn · (f ×g)n

Here,(·)n is the mapping function onn-tuples and ‘×’ is the map-
ping function on pairs.

The following law states a basic property ofρ, which could be put
to use in a divide and conquer implementation ofriffle.

ρm,n+n′ · (catn,n′)m ·zipm = catmn,mn′ · (ρm,n×ρm,n′) (3)

Given two matrices of type(Xn)m and (Xn′)m we can either join
them horizontally (catenating the rows) and riffle the result or else
riffle them separately and catenate the resulting lists. The final re-
sult is the same in both cases.

Finally, ρ satisfies two monad-like properties.

ρ1,n ·wrap = id (4)

ρm,nn′ · (ρn,n′)m = ρmn,n′ ·ρm,n (5)

If we ignore the size constraints, we obtainρ ·wrap= id andρ ·ρ∗ =
ρ · ρ, which are two of the monad laws withconcat replaced by
ρ. That said note that the input for the last equation is athree-
dimensionalmatrix of type((Xn′)n)m.

Specification

Before we specify the iterative version oflist let us first rephrase
Treeand recursive version in the current framework.

The data type of multiway trees is indexed by a mixed-radix nu-
meral, which specifies the size of the prefixes and the degree of the
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nodes.

Tree
[
d0,d1, . . .
b0,b1, . . .

]
X = Xd0 × (Tree

[
d1, . . .
b1, . . .

]
X)b0

Let

n =
[
d0,d1, . . .
b0,b1, . . .

]
.

The type oflist is then

list
[
d0,d1, . . .
b0,b1, . . .

]
:: Tree

[
d0,d1, . . .
b0,b1, . . .

]
X→ Xn.

The straightforward recursive implementation is given by

list
[
0, 0, . . .
b0,b1, . . .

]
= const()

list
[
d0,d1, . . .
b0,b1, . . .

]
= catd0 · (id×ρb0 · (list

[
d1, . . .
b1, . . .

]
)b0).

Now, the idea of the iterative version is to replace theb0 recursive
calls tolist by a single recursive call that operates onb0 trees simul-
taneously. This motivates the following specification (we renamed
b0 to w).

ilistw

[
d0,d1, . . .
b0,b1, . . .

]
:: (Tree

[
d0,d1, . . .
b0,b1, . . .

]
X)w → Xwn

ilistw

[
d0,d1, . . .
b0,b1, . . .

]
= ρw · (list

[
d0,d1, . . .
b0,b1, . . .

]
)w

Derivation

Let us introduce the following abbreviations:

σ0 =
[
0, 0, . . .
b0,b1, . . .

]
, σ =

[
d0,d1, . . .
b0,b1, . . .

]
, andσ′ =

[
d1, . . .
b1, . . .

]
.

For the base case we calculate.

ilistw σ0

= { specification ofilist }
ρw · (list σ0)w

= { definition of list }
ρw · (const())w

= { const() = f 0 and naturality ofρ }
const() ·ρw

= { const() · f = const() }
const()

For the inductive case we reason.

ilistw σ
= { specification ofilist }

ρw · (list σ)w

= { definition of list }
ρw · (catd0 · (id×ρb0 · (list σ′)b0))w

= { (·)n functor}
ρw · (catd0)

w · (id×ρb0 · (list σ′)b0)w

= { zipn ·unzipn = id }
ρw · (catd0)

w ·zipw ·unzipw · (id×ρb0 · (list σ′)b0)w

= { property (3)}
catwd0 · (ρw×ρw) ·unzipw · (id×ρb0 · (list σ′)b0)w

= { naturality ofunzip}
catwd0 · (ρw×ρw) · (idw× (ρb0 · (list σ′)b0)w) ·unzipw

= { functor ‘×’ and (·)n }
catwd0 · (ρw×ρw · (ρb0)

w · ((list σ′)b0)w) ·unzipw
= { property (5)}

catwd0 · (ρw×ρwb0 ·ρw · ((list σ′)b0)w) ·unzipw
= { naturality ofρ }

catwd0 · (ρw×ρwb0 · (list σ′)wb0 ·ρw) ·unzipw
= { specification ofilist }

catwd0 · (ρw× ilistwb0 σ′ ·ρw) ·unzipw

Noting thatunzipw≈ elems∗4subs∗ we have derived the point-free
counterpart of the definition given in Sec. 5.2.

It remains to definelist in terms ofilist.

list σ
= { property (4)}

ρ1 ·wrap· list σ
= { naturality of wrap}

ρ1 · (list σ)1 ·wrap

= { specification ofilist }
ilist1 σ ·wrap

C Derivation of iarray

Sincelist σ andilistw σ are isomorphisms, we can specifygarrayσ
andiarrayw σ simply as function inverses.

list σ ·garrayσ = id = garrayσ · list σ

ilistw σ · iarrayw σ = id = iarrayw σ · ilistw σ

As an illustration, here is the straightforward derivation ofiarray
(inductive case only).

ilistw σ · iarrayw σ = id

⇐⇒ { definition of ilist }
catwd0 · (ρw× ilistwb0 σ′ ·ρw) ·unzipw · iarrayw σ = id

⇐⇒ { cat anduncatare inverses}
(ρw× ilistwb0 σ′ ·ρw) ·unzipw · iarrayw σ = uncatwd0

⇐⇒ { ρ andρ̆ are inverses, specification ofilistw }
unzipw · iarrayw σ = (ρ̆w× ρ̆w · iarraywb0

σ′) ·uncatwd0

⇐⇒ { zip andunzipare inverses}
iarrayw σ = zipw · (ρ̆w× ρ̆w · iarraywb0

σ′) ·uncatwd0

Noting thatzipw≈ node∗ we have derived the point-free counterpart
of the definition given in Sec. 5.3.
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