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1 Institut für Informatik III, Universität Bonn
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Abstract. A polytypic function is a function that can be instantiated
on many data types to obtain data type specific functionality. Examples
of polytypic functions are the functions that can be derived in Haskell,
such as show , read , and ‘ ’. More advanced examples are functions for
digital searching, pattern matching, unification, rewriting, and structure
editing. For each of these problems, we not only have to define poly-
typic functionality, but also a type-indexed data type: a data type that
is constructed in a generic way from an argument data type. For ex-
ample, in the case of digital searching we have to define a search tree
type by induction on the structure of the type of search keys. This paper
shows how to define type-indexed data types, discusses several examples
of type-indexed data types, and shows how to specialize type-indexed
data types. The approach has been implemented in Generic Haskell, a
generic programming extension of the functional language Haskell.

1 Introduction

A polytypic (or generic, type-indexed) function is a function that can be instan-
tiated on many data types to obtain data type specific functionality. Examples
of polytypic functions are the functions that can be derived in Haskell [32], such
as show , read , and ‘ ’. See Backhouse et al [1] for an introduction to polytypic
programming.

More advanced examples of polytypic functions are functions for digital
searching [12], pattern matching [23], unification [20, 4], and rewriting [21]. For
each of these problems, we not only have to define polytypic functionality, but
also a type-indexed data type: a data type that is constructed in a generic way
from an argument data type. For instance, in the case of digital searching we
have to define a search tree type by induction on the structure of the type of
search keys. Since current programming languages do not support type-indexed
data types, the examples that appear in the literature are either implemented
in an ad-hoc fashion [20], or not implemented at all [12].
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This paper shows how to define type-indexed data types, discusses several
examples of type-indexed data types, and shows how to specialize type-indexed
data types. The specialization is illustrated with example translations to Haskell.
The approach has been implemented in Generic Haskell, a generic programming
extension of the functional language Haskell. The current version of Generic
Haskell can be obtained from http://www.generic-haskell.org/.

Example 1: Digital searching. A digital search tree or trie is a search tree scheme
that employs the structure of search keys to organize information. Searching is
useful for various data types, so we would like to allow for keys and information
of any data type. This means that we have to construct a new kind of trie for
each key type. For example, consider the data type String defined by4

data String = nil | cons Char String .

We can represent string-indexed tries with associated values of type V as follows:

data FMap String V = trie String (Maybe V ) (FMap Char (FMap String V )).

Such a trie for strings would typically be used for a concordance or another
index on texts. The first component of the constructor trie String contains the
value associated with nil . The second component of trie String is derived from
the constructor cons :: Char → String → String . We assume that a suitable
data structure, FMap Char , and an associated look-up function lookup Char ::
∀V .Char → FMap Char V → Maybe V for characters are predefined. Given
these prerequisites we can define a look-up function for strings as follows:

lookup String :: String → FMap String V → Maybe V
lookup String nil (trie String tn tc) = tn
lookup String (cons c s) (trie String tn tc) = (lookup Char c 3 lookup String s) tc.

To look up a non-empty string, cons c s, we look up c in the FMap Char
obtaining a trie, which is then recursively searched for s. Since the look-up
functions have result type Maybe V , we use the monadic composition of the
Maybe monad, called ‘3’, to compose lookup String and lookup Char .

(3) :: (A → Maybe B) → (B → Maybe C ) → A → Maybe C
(f 3 g) a = case f a of {nothing → nothing ; just b → g b}.

In the following section we will show how to define a trie and an associ-
ated look-up function for an arbitrary data type. The material is taken from
Hinze [12], and it is repeated here because it serves as a nice and simple example
of a type-indexed data type.

4 The examples are given in Haskell [32]. Deviating from Haskell we use identifiers
starting with an upper case letter for types (this includes type variables), and iden-
tifiers starting with a lower case letter for values (this includes data constructors).
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Example 2: Pattern matching. The polytypic functions for the maximum seg-
ment sum problem [2] and pattern matching [23] use labelled data types. These
labelled data types, introduced in [2], are used to store at each node the subtree
rooted at that node, or a set of patterns (trees with variables) matching at a
subtree, etc. For example, the data type of labelled bushes is defined by

data Lab Bush L = label Leaf Char L
| label Fork (Lab Bush L) (Lab Bush L) L.

In the following section we show how to define such a labelled data type generi-
cally.

Example 3: Zipper. The zipper [17] is a data structure that is used to represent
a tree together with a subtree that is the focus of attention, where that focus
may move left, right, up, or down the tree. For example, the data type Bush and
its corresponding zipper, called Loc Bush, are defined by

data Bush = leaf Char | fork Bush Bush
type Loc Bush = (Bush,Context Bush)
data Context Bush = top

| forkL Context Bush Bush
| forkR Bush Context Bush.

Using the type of locations we can efficiently navigate through a tree. For exam-
ple:

down Bush :: Loc Bush → Loc Bush
down Bush (leaf a, c) = (leaf a, c)
down Bush (fork tl tr , c) = (tl , forkL c tr)
right Bush :: Loc Bush → Loc Bush
right Bush (tl , forkL c tr) = (tr , forkR tl c)
right Bush l = l .

The navigator function down Bush moves the focus of attention to the leftmost
subtree of the current node; right Bush moves the focus to its right sibling.

Huet [17] defines the zipper data structure for rose trees and for the data
type Bush, and gives the generic construction in words. In Section 5 we describe
the zipper in more detail and show how to define a zipper for an arbitrary data
type.

Other examples. Besides these three examples, a number of other examples of
type-indexed data types have appeared in the literature [3, 11, 10, 34]. We ex-
pect that type-indexed data types will also be useful for generic DTD trans-
formations [25]. Generally, we believe that type-indexed data types are just as
important as type-indexed functions.
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Background and related work. There is little related work on type-indexed data
types. Type-indexed functions [26, 2, 29, 9, 18] were introduced more than a decade
ago. There are several other approaches to type-indexed functions, see Dubois
et al [8], Jay et al [22] and Yang [36], but none of them mentions user-defined
type-indexed data types (Yang does mention value-indexed types, usually called
dependent types).

Type-indexed data types, however, appear in the work on intensional type
analysis [11, 6, 5, 33, 35]. Intensional type analysis is used in typed intermediate
languages in compilers for polymorphic languages, among others to be able to
optimize code for polymorphic functions. This work differs from our work in
several aspects:

– typed intermediate languages are expressive, but rather complex languages
not intended for programmers but for compiler writers;

– since Generic Haskell is built on top of Haskell, there is the problem of how
to combine user-defined functions and data types with type-indexed func-
tions and data types. This problem does not appear in typed intermediate
languages;

– typed intermediate languages interpret (a representation of a) type argument
at run-time, whereas the specialization technique described in this paper does
not require passing around (representations of) type arguments;

– typed intermediate languages are restricted to data types of kind ?. There
are many examples where we want to lift this restriction, and define type-
indexed data types also on higher-order kinded types.

Organization. The rest of this paper is organized as follows. We will show how to
define type-indexed data types in Section 2 using Hinze’s approach to polytypic
programming [14, 15]. Section 3 illustrates the process of specialization by means
of example. Section 4 shows that type-indexed data types possess kind-indexed
kinds, and gives a theoretical background for the specialization of type-indexed
data types and functions with arguments of type-indexed data types. Section 5
provides the details of the zipper example. Finally, Section 6 summarizes the
main points and concludes.

2 Defining type-indexed data types

This section shows how to define type-indexed data types. Section 2.1 briefly re-
views the concepts of polytypic programming necessary for defining type-indexed
data types. The subsequent sections define type-indexed data types for the prob-
lems described in the introduction. We assume a basic familiarity with Haskell’s
type system and in particular with the concept of kinds [28]. For a more thorough
treatment the reader is referred to Hinze’s work [15, 14].

2.1 Type-indexed definitions

The central idea of polytypic programming (or type-indexed programming) is to
provide the programmer with the ability to define a function by induction on the
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structure of types. Since Haskell’s type language is rather involved—we have mu-
tually recursive types, parameterized types, nested types, and type constructors
of higher-order kinds—this sounds like a hard nut to crack. Fortunately, one can
show that a polytypic function is uniquely defined by giving cases for primitive
types and type constructors. For concreteness, let us assume that 1, Char , ‘+’,
and ‘×’ are primitive, that is, the language of types of kind ? is defined by the
following grammar:

T? ::= 1 | Char | T? + T? | T? × T?.

The unit type, sum and product types are required for modelling Haskell’s data
construct that introduces a sum of products. We treat these type constructors
as if they were given by the following data declarations:

data 1 = ()
data A + B = inl A | inr B
data A × B = (A,B).

Now, a polytypic function is simply given by a definition that is inductive on
the structure of T?. As an example, here is the polytypic equality function. For
emphasis, the type index is enclosed in angle brackets.

equal〈T :: ?〉 :: T → T → Bool
equal〈1〉 () () = true
equal〈Char〉 c1 c2 = equalChar c1 c2

equal〈T1 + T2〉 (inl a1) (inl a2) = equal〈T1〉 a1 a2

equal〈T1 + T2〉 (inl a1) (inr b2) = false
equal〈T1 + T2〉 (inr b1) (inl a2) = false
equal〈T1 + T2〉 (inr b1) (inr b2) = equal〈T2〉 b1 b2

equal〈T1 × T2〉 (a1, b1) (a2, b2) = equal〈T1〉 a1 a2 ∧ equal〈T2〉 b1 b2.

This simple definition contains all ingredients needed to specialize equal for ar-
bitrary data types. Note that the type language T? does not contain construc-
tions for type abstraction, application, and fixed points. Instances of polytypic
functions on types with these constructions are generated automatically, see
Section 4.

The type language T? does not contain a construction for referring to con-
structor names either. Since we sometimes want to be able to refer to the name
of a constructor, for example in a polytypic show function, we add one extra
case to the type language: c of T , where c is a value of type String or another
appropriate abstract data type for constructors, and T is a value of T?. For
example, the Haskell data type of natural numbers

data Nat = zero | succ Nat

is represented in T? by

Nat = zero of 1 + succ of Nat .
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We adopt the convention that if the ‘c of T ’ case is omitted in the definition of
a polytypic function poly , we assume that poly〈c of T 〉 = poly〈T 〉.

The function equal is indexed by types of kind ?. A polytypic function may
also be indexed by type constructors of kind ? → ? (and, of course, by type
constructors of other kinds, but these are not needed in the sequel). The language
of types of kind ? → ? is characterized by the following grammar:

F?→? ::= Id | K 1 | K Char | F?→? + F?→? | F?→? × F?→? | c of F?→?,

where Id , K T (T = 1 or Char), ‘+’, ‘×’, and of are given by (note that we
overload the symbols ‘+’, ‘×’, and of)

Id = ΛA .A
K T = ΛA .T
F1 + F2 = ΛA .F1 A + F2 A
F1 × F2 = ΛA .F1 A × F2 A
c of F = ΛA . c of F A.

Here, ΛA .T denotes abstraction on the type level. For example, the type of
lists parameterized by some type is defined by List = K 1 + Id × List . Again,
F?→? is used to describe the language on which we define polytypic functions by
induction, it is not a complete description of all types of kind ? → ?.

A well-known example of a (? → ?)-indexed function is the mapping function,
which applies a given function to each element of type A in a given structure of
type F A.

map〈F :: ? → ?〉 :: ∀A B . (A → B) → (F A → F B)
map〈Id〉 m a = m a
map〈K 1〉 m c = c
map〈K Char〉 m c = c
map〈F1 + F2〉 m (inl f ) = inl (map〈F1〉 m f )
map〈F1 + F2〉 m (inr g) = inr (map〈F2〉 m g)
map〈F1 × F2〉 m (f , g) = (map〈F1〉 m f ,map〈F2〉 m g).

Using map we can, for instance, define generic versions of cata- and anamor-
phisms [30]. To this end we assume that data types are given as fixed points of
so-called pattern functors. In Haskell the fixed point combinator can be defined
as follows.

newtype Fix F = in{out :: F (Fix F )}.
For example, the type of naturals might have been defined by Nat = Fix (K 1+
Id). Cata- and anamorphisms are then given by

cata〈F :: ? → ?〉 :: ∀A . (F A → A) → (Fix F → A)
cata〈F 〉 ϕ = ϕ ·map〈F 〉 (cata〈F 〉 ϕ) · out
ana〈F :: ? → ?〉 :: ∀A . (A → F A) → (A → Fix F )
ana〈F 〉 ψ = in ·map〈F 〉 (ana〈F 〉 ψ) · ψ.

Note that both functions are parameterized by the type functor F rather than
by the fixed point Fix F .
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2.2 Tries

Tries are based on the following isomorphisms, also known as the laws of expo-
nentials.

1 →fin V ∼= V
(T1 + T2) →fin V ∼= (T1 →fin V ) × (T2 →fin V )
(T1 × T2) →fin V ∼= T1 →fin (T2 →fin V )

Here, T →fin V denotes a finite map. As FMap〈T 〉 V , the generalization of
FMap String given in the introduction, represents the set of finite maps from
T to V , the isomorphisms above can be rewritten as defining equations for
FMap〈T 〉.

FMap〈T :: ?〉 :: ? → ?
FMap〈1〉 = ΛV .Maybe V
FMap〈Char〉 = ΛV .FMapChar V
FMap〈T1 + T2〉 = ΛV .FMap〈T1〉 V × FMap〈T2〉 V
FMap〈T1 × T2〉 = ΛV .FMap〈T1〉 (FMap〈T2〉 V )

Note that FMap〈1〉 is Maybe rather than Id since we use the Maybe monad
for exception handling. We assume that a suitable data structure, FMapChar ,
and an associated look-up function lookupChar :: ∀V .Char → FMapChar V →
Maybe V for characters are predefined. The generic look-up function is then
given by the following definition.

lookup〈T :: ?〉 :: ∀V .T → FMap〈T 〉 V → Maybe V
lookup〈1〉 () t = t
lookup〈Char〉 c t = lookupChar c t
lookup〈T1 + T2〉 (inl k1) (t1, t2) = lookup〈T1〉 k1 t1
lookup〈T1 + T2〉 (inr k2) (t1, t2) = lookup〈T2〉 k2 t2
lookup〈T1 × T2〉 (k1, k2) t = (lookup〈T1〉 k1 3 lookup〈T2〉 k2) t .

On sums the look-up function selects the appropriate map; on products it ‘com-
poses’ the look-up functions for the component keys.

2.3 Labelling

A labelled data type is used to store information at the nodes of a tree. The
kind of information that is stored varies from application to application: in the
case of the maximum segment sum it is the subtree rooted at that node, in the
case of pattern matching it is the set of patterns matching at that node. We
will show how to define such labelled data types in this section. The data type
Labelled labels a data type given by a so-called pattern functor:

Labelled〈F :: ? → ?〉 :: ? → ?
Labelled〈F 〉 = ΛL .Fix (ΛR .Label〈F 〉 L R).
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The type-indexed data type Label distributes the label type over the sum, and
adds a label type L to each other construct. Since each construct is guarded by
a constructor (c of F ), it suffices to add labels to constructors.

Label〈F :: ? → ?〉 :: ? → ? → ?
Label〈F1 + F2〉 = ΛL R .Label〈F1〉 L R + Label〈F2〉 L R
Label〈c of F 〉 = ΛL R .F R × L.

The type-indexed function suffixes labels a value of a data type with the subtree
rooted at each node. It uses a helper function add , which adds a label to a value
of type F T , returning a value of type Label〈F 〉 L T .

add〈F :: ? → ?〉 :: ∀L T .L → F T → Label〈F 〉 L T
add〈F1 + F2〉 l (inl x ) = inl (add〈F1〉 l x )
add〈F1 + F2〉 l (inr y) = inr (add〈F2〉 l y)
add〈c of F 〉 l x = (x , l).

The function suffixes is then defined as a recursive function that adds the sub-
trees rooted at each level to the tree. It adds the argument tree to the top level,
and applies suffixes to the children by means of function map.

suffixes〈F :: ? → ?〉 :: Fix F → Labelled〈F 〉 (Fix F )
suffixes〈F 〉 l@(in t) = in (add〈F 〉 l (map〈F 〉 (suffixes〈F 〉) t)).

3 Examples of translations to Haskell

The semantics of type-indexed data types will be given by means of specializa-
tion. This section gives some examples as an introduction to the formal rules
provided in the following section.

We illustrate the main ideas by translating the digital search tree example
to Haskell. This translation shows in particular how type-indexed data types are
specialized in Generic Haskell: the Haskell code given here will be automatically
generated by the Generic Haskell compiler. The example is structured into three
sections: a translation of data types, a translation of type-indexed data types,
and a translation of type-indexed functions that take type-indexed data types
as arguments.

3.1 Translating data types

In general, a type-indexed function is translated to several functions: one for each
user-defined data type on which it is used. These instances work on a slightly
different, but isomorphic data type, that is close to the type language T? and
reveals the structure of the Haskell data type. This implies, of course, that values
of user-defined data types have to be translated to these isomorphic data types.
For example, the type Nat of natural numbers defined by

data Nat = zero | succ Nat ,
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is translated to the following type (in which Nat itself still appears), together
with two conversion functions.

type Nat ′ = 1 + Nat
from Nat :: Nat → Nat ′

from Nat zero = inl ()
from Nat (succ x ) = inr x
to Nat :: Nat ′ → Nat
to Nat (inl ()) = zero
to Nat (inr x ) = succ x .

This mapping avoids direct recursion by adding the extra layer of Nat ′. 5

For convenience, we collect the conversion functions together in an embedding-
projection pair:

data EP a b = EP{from :: a → b, to :: b → a }
ep Nat :: EP Nat Nat ′

ep Nat = EP from Nat to Nat .

3.2 Translating type-indexed data types

A type-indexed data type is translated to several newtypes in Haskell: one for
each type case in its definition. The translation proceeds in a similar fashion as
in Hinze [15], but now for types instead of values. For example, the product case
T1 × T2 takes two argument types for T1 and T2, and returns the type for the
product. Recall the type-indexed data type FMap defined by

FMap〈1〉 = ΛV .Maybe V
FMap〈Char〉 = ΛV .FMapChar V
FMap〈T1 + T2〉 = ΛV .FMap〈T1〉 V × FMap〈T2〉 V
FMap〈T1 × T2〉 = ΛV .FMap〈T1〉 (FMap〈T2〉 V ).

These equations are translated to:

newtype FMap Unit V = fMap Unit (Maybe V )
newtype FMap Char V = fMap Char (FMapChar V )
newtype FMap Either FMA FMB V = fMap Either (FMA V ,FMB V )
newtype FMap Product FMA FMB V = fMap Product (FMA (FMB V )).

5 Furthermore, the mapping translates n-ary products and sums to binary products
and sums. This is revealed by looking at a more complex data type, for instance

data Tree A = empty | node (Tree A) A (Tree A)

where the constructor node takes three arguments. The isomorphic type generated
for Tree is

data Tree ′ a = 1 + Tree A × (A × Tree A).
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Finally, for each data type on which we want to use a trie we generate a suitable
instance.

type FMap Nat ′ V = fMap Either FMap Unit FMap Nat V
newtype FMap Nat V = fMap Nat{unFMap Nat :: FMap Nat ′ V }.

Note that we use newtype for FMap Nat because it is not possible to define
recursive types in Haskell. The types FMap Nat and FMap Nat ′ can easily be
converted into each other by means of the following embedding-projection pair:

ep FMap Nat :: EP (FMap Nat V ) (FMap Nat ′ V )
ep FMap Nat = EP unFMap Nat fMap Nat .

3.3 Translating type-indexed functions on type-indexed data types

The translation of a type-indexed function that takes a type-indexed data type
as an argument is a generalization of the translation of ‘ordinary’ type-indexed
functions. The translation consists of two parts: a translation of the type-indexed
function itself, and a specialization on each data type on which the type-indexed
function is used, together with a conversion function.

A type-indexed function is translated by generating a function, together with
its type signature, for each line of its definition. For the type indices of kind ?
(i.e. 1 and Char) we generate types that are instances of the type of the generic
function. The occurrences of the type index are replaced by the instance type,
and occurrences of type-indexed data types are replaced by the translation of
the type-indexed data type on the type index. As an example, for the generic
function lookup of type:

lookup〈T :: ?〉 :: ∀V .T → FMap〈T 〉 V → Maybe V ,

the instances are obtained by replacing T by 1 or Char , and by replacing
FMap〈T 〉 by FMap Unit or FMap Char , respectively. So, for the function lookup
we have that the user-supplied equations

lookup〈1〉 () t = t
lookup〈Char〉 c t = lookupChar c t ,

are translated into

lookup Unit :: ∀V . 1 → FMap Unit V → Maybe V
lookup Unit () (fMapUnit t) = t
lookup Char :: ∀V .Char → FMap Char V → Maybe V
lookup Char c (fMapChar t) = lookupChar c t .

Note that we add the constructors for the tries to the trie arguments of the
function.

For the type indices of kind ? → ? → ? (i.e. ‘+’ and ‘×’) we generate types
that take two functions as arguments, corresponding to the instances of the
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generic function on the arguments of ‘+’ and ‘×’, and return a function of the
combined type, see Hinze [15]. For example, the following lines

lookup〈T1 + T2〉 (inl k1) (t1, t2) = lookup〈T1〉 k1 t1
lookup〈T1 + T2〉 (inr k2) (t1, t2) = lookup〈T2〉 k2 t2
lookup〈T1 × T2〉 (k1, k2) t = (lookup〈T1〉 k1 3 lookup〈T2〉 k2) t

are translated into the following functions

lookup Either :: ∀A FMA .∀B FMB .
(∀V .A → FMA V → Maybe V )
→ (∀V .B → FMB V → Maybe V )
→ (∀V .A + B → FMap Either FMA FMB V → Maybe V )

lookup Either lua lub (inl a) (fMap Either (fma, fmb)) = lua a fma
lookup Either lua lub (inr b) (fMap Either (fma, fmb)) = lub b fmb
lookup Product :: ∀A FMA . ∀B FMB .

(∀V .A → FMA V → Maybe V )
→ (∀V .B → FMB V → Maybe V ) →
→ (∀V .A × B → FMap Product FMA FMB V → Maybe V )

lookup Product lua lub (a, b) (fMap Product t) = (lua a 3 lub b) t .

These functions are obtained from the definition of lookup by replacing the oc-
currences of the lookup function in the right-hand sides by their corresponding
arguments.

Finally, we generate a specialization of the type-indexed function for each
data type on which it is used. For example, on Nat we have

lookup Nat :: ∀V .Nat → FMap Nat V → Maybe V
lookup Nat = conv Lookup Nat (lookup Either lookup Unit lookup Nat).

The argument of function conv Lookup Nat (defined below) is generated directly
from the type Nat ′. Finally, for each instance we have to generate a conversion
function like conv Lookup Nat . In general, the conversion function converts a
type-indexed function that works on the translated isomorphic data type to
a function that works on the original data type. As an example, the function
conv Lookup Nat converts a lookup function on the internal data type Nat ′ to a
lookup function on the type of natural numbers itself.

conv Lookup Nat :: (∀V .Nat ′ → FMap Nat ′ V → Maybe V )
→ (∀V .Nat → FMap Nat V → Maybe V )

conv Lookup Nat lu = λt fmt → lu (from Nat t) (unFMap Nat fmt)

Note that the functions to Nat and fMap Nat are not used on the right-hand
side of the definition of conv Lookup Nat . This is because no values of type Nat
or FMap Nat are built for the result of the function. If the result of the type-
indexed function consisted of values of the type index or of the type-indexed
data type, these functions would be applied at the appropriate positions.
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3.4 Implementing FMap in Haskell directly

Alternatively, we can use multi-parameter type classes and functional dependen-
cies [24] to implement a type-indexed data type such as FMap in Haskell. An
example is given in Figure 1. However, to use this implementation we would have
to marshal and unmarshal user-defined data types and values of user-defined
data types by hand. Furthermore, this approach does not work for all types of
all kinds.

class FMap fma a | a → fma where
lookup :: a → fma v → Maybe v

instance FMap Maybe () where
lookup () fm = fm

data Pair f g a = Pair (f a) (g a)

instance (FMap fma a,FMap fmb b) ⇒ FMap (Pair fma fmb) (Either a b) where
lookup (Left a) (Pair fma fmb) = lookup a fma
lookup (Right b) (Pair fma fmb) = lookup b fmb

data Comp f g a = Comp (f (g a))

instance (FMap fma a,FMap fmb b) ⇒ FMap (Comp fma fmb) (a, b) where
lookup (a, b) (Comp fma) = (lookup a 3 lookup b) fma

Fig. 1. Implementing FMap in Haskell directly.

4 Specializing type-indexed types and values

This section gives a formal semantics of type-indexed data types by means of spe-
cialization. Examples of this translation have been given in the previous section.
The specialization to concrete data type instances removes the type arguments of
type-indexed data types and functions. In other words, type-indexed data types
and functions can be used at no run-time cost, since all type arguments are re-
moved at compile-time. The specialization can be seen as partial evaluation of
type-indexed functions where the type index is the static argument. The special-
ization is obtained by lifting the semantic description of type-indexed functions
given in Hinze [13] to the level of data types.

Type-indexed data types and type-indexed functions take types as argu-
ments, and return types and functions. For the formal description of type-indexed
data types and functions and for their semantics we use an extension of the poly-
morphic lambda calculus, described in Section 4.1. Section 4.2 briefly discusses
the form of type-indexed definitions. The description of the specialization is di-
vided in two parts: Section 4.3 deals with the specialization of type-indexed data
types, and Section 4.4 deals with the specialization of type-indexed functions
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that take type-indexed data types as arguments. Section 4.5 describes how the
gap between the formal type language and Haskell’s data types can be bridged.

4.1 The polymorphic lambda calculus

This section briefly introduces kinds, types, type schemes, and terms.

Kind terms are formed by:

T, U ∈ Kind ::= ? kind of types
| (T → U) function kind.

We distinguish between type terms and type schemes: the language of type
terms comprises the types that may appear as type indices; the language of type
schemes comprises the constructs that are required for the translation of generic
definitions (such as polymorphic types).

Type terms are built from type constants and type variables using type applica-
tion and type abstraction.

T ,U ∈ Type ::= C type constant
| A type variable
| (ΛA :: U .T ) type abstraction
| (T U ) type application

For typographic simplicity, we will often omit the kind annotation in ΛA :: U .T
(especially if U = ?) and we abbreviate nested abstractions ΛA1 . . . . ΛAm .T by
ΛA1 . . . Am .T .

In order to be able to model Haskell’s data types the set of type constants
should include at least the types 1, Char , ‘+’, ‘×’, and ‘c of ’ for all known
constructors in the program. Furthermore, it should include a family of fixed
point operators indexed by kind: FixT :: (T → T) → T. In the examples, we will
often omit the kind annotation T in FixT. We may additionally add the function
space constructor ‘→’ or universal quantifiers ∀U :: (U → ?) → ? to the set of
type constants (see Section 4.5 for an example).

Note that both type languages we have introduced in Section 2.1, T? and
F?→?, are subsumed by this type language.

Type schemes are formed by:

R,S ∈ Scheme ::= T type term
| (R → S ) functional type
| (∀A :: U .S ) polymorphic type.

Terms are formed by:

t , u ∈ Term ::= c constant
| a variable
| (λa :: S . t) abstraction
| (t u) application
| (λA :: U . t) universal abstraction
| (t R) universal application.
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Here, λA ::U . t denotes universal abstraction (forming a polymorphic value) and
t R denotes universal application (instantiating a polymorphic value). We use
the same syntax for value abstraction λa :: S . t (here a is a value variable) and
universal abstraction λA :: U . t (here A is a type variable). We assume that the
set of value constants includes at least the polymorphic fixed point operator

fix :: ∀A . (A → A) → A

and suitable functions for each of the other type constants (such as () for ‘1’, inl ,
inr , and case for ‘+’, and outl , outr , and (,) for ‘×’). To improve readability we
will usually omit the type argument of fix .

We omit the standard typing rules for the polymorphic lambda calculus.

4.2 On the form of type-indexed definitions

The type-indexed definitions given in Section 2 implicitly define a catamorphism
on the language of types. For the specialization we have to make these cata-
morphisms explicit. This section describes the different views on type-indexed
definitions.

Almost all inductive definitions of type-indexed functions and data types
given in Section 2 take the form of a catamorphism:

cata〈1〉 = cata1

cata〈Char〉 = cataChar

cata〈T1 + T2〉 = cata+ (cata〈T1〉) (cata〈T2〉)
cata〈T1 × T2〉 = cata× (cata〈T1〉) (cata〈T2〉)
cata〈c of T1〉 = catac of (cata〈T1〉).

These equations implicitly define the family of functions cata1, cataChar , cata+,
cata×, and catac of . In the sequel, we will assume that type-indexed functions
and data types are explicitly defined as a catamorphism. For example, for digital
search trees we have

FMap1 = ΛV .Maybe V
FMapChar = ΛV .FMapChar V
FMap+ = ΛFMapA FMapB V .FMapA V × FMapB V
FMap× = ΛFMapA FMapB V .FMapA (FMapB V )
FMapc of = ΛFMapA V .FMapA V .

Some inductive definitions, such as the definition of Label , also use the argument
types themselves in their right-hand sides. Such functions are called paramor-
phisms [29], and are characterized by:

para〈1〉 = para1

para〈Char〉 = paraChar

para〈T1 + T2〉 = para+ T1 T2 (para〈T1〉) (para〈T2〉)
para〈T1 × T2〉 = para× T1 T2 (para〈T1〉) (para〈T2〉)
para〈c of T1〉 = parac of T1 (para〈T1〉).
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Fortunately, every paramorphism can be transformed into a catamorphism by
tupling it with the identity. Likewise, mutually recursive definitions can be trans-
formed into simple catamorphisms using tupling.

Section 4.3 below describes how to specialize type-indexed data types with
type indices that appear in the set C of type constants: 1, Char , ‘+’, ‘×’, and
‘c of ’. However, we have also used the type indices Id , K 1, K Char , and lifted
versions of ‘+’ and ‘×’. How are type-indexed data types with these type indices
specialized? The specialization of type-indexed data types with higher-order type
indices proceeds in much the same fashion as in the following section. Essentially,
the process only has to be lifted to higher-order type indices. For the details of
of this lifting process see Hinze [13].

4.3 Specializing type-indexed data types

Rather amazingly, the process of specialization can be phrased as an interpre-
tation of the simply typed lambda calculus. The interpretation of the constants
(1, Char , ‘+’, ‘×’, and ‘c of ’) is obtained from the definition of the type-indexed
data type as a catamorphism. The remaining constructs are interpreted gener-
ically: type application is interpreted as type application (albeit in a different
domain), abstraction as abstraction, and fixed points as fixed points.

The first thing we have to do is to generalize the ‘type’ of a type-indexed data
type. In the previous sections, the type-indexed data types had a fixed kind, for
example, FMapT ::? :: ? → ?. However, when type application is interpreted as
application, we have that FMapList A = FMapList FMapA. Since List is of kind
? → ?, we have to extend the domain of FMap by giving it a kind-indexed kind,
in such a way that FMapList :: (? → ?) → (? → ?).

Generalizing the above example, we have that a type-indexed data type pos-
sesses a kind-indexed kind:

DataT ::T :: DataT,

where DataT has the following form:

DataT::2 :: 2

Data? =
DataA→B = DataA → DataB.

Here, ‘2’ is the superkind: the type of kinds. Note that only the definition of
Data?, as indicated by the box, has to be given to complete the definition of the
kind-indexed kind. The definition of Data on functional kinds is dictated by the
specialization process. Since type application is interpreted by type application,
the kind of a type with a functional kind is functional.

For example, the kind of the type-indexed data type FMapT , where T is a
type of kind ? is:

FMap? = ? → ?.

As noted above, the process of specialization is phrased as an interpretation of
the simply typed lambda calculus. The interpretation of the constants (1, Char ,
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‘+’, ‘×’, and ‘c of ’) is obtained from the definition of the type-indexed data type
as a catamorphism, and the interpretation of application, abstraction, and fixed
points is given via an environment model [31] for the type-indexed data type.

An environment model is an applicative structure (M, app, const), where M is
the domain of the structure, app a mapping that interprets functions, and const
maps constants to the domain of the structure. Furthermore, in order to qualify
as an environment model, an applicative structure has to be extensional and
must satisfy the so-called combinatory model condition. The precise definitions
of these concepts can be found in Mitchell [31]. For an arbitrary type-indexed
data type DataT ::T :: DataT we use the following applicative structure:

MT = TypeDataT / E
appT,U [T ] [U ] = [T U ]
const(C ) = [DataC ].

The domain of the applicative structure for a kind T is the equivalence class of
the set of types of kind DataT, under an appropriate set of equations E between
type terms (e.g. F (FixT F ) = FixT F for all kinds T and type constructors F
of kind T → T). The application of two equivalence classes of types (denoted
by [T ] and [U ]) is the equivalence class of the application of the types. The
definition of the constants is obtained from the definition as a catamorphism.
It can be verified that the applicative structure defined thus is an environment
model.

It remains to specify the interpretation of the fixed point operators, which is
the same for all type-indexed data types:

const(FixT) = [FixDataT
].

4.4 Specializing type-indexed values

A type-indexed value possesses a kind-indexed type [15],

polyT ::T :: PolyT Data1
T . . . Datan

T

in which PolyT has the following general form

PolyT::2 :: Data1
T → · · · → Datan

T → ?

Poly? = ΛX1 :: Data1
? . . . . . ΛXn :: Datan

? .

PolyA→B = ΛX1 :: Data1
A→B . . . . . ΛXn :: Datan

A→B .

∀A1 :: Data1
A . . . . . ∀An :: Datan

A .
PolyA A1 . . . An → PolyB (X1 A1) . . . (Xn An).

Again, note that only an equation for Poly? has to be given to complete the
definition of the kind-indexed type. The definition of Poly on functional kinds is
dictated by the specialization process. The presence of type-indexed data types
slightly complicates the type of a type-indexed value. In Hinze [15] PolyT takes
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n arguments of type T. Here PolyT takes n possibly different type arguments
obtained from the type-indexed data type arguments. For example, for the look-
up function we have:

LookupT::2 :: IdT → FMapT → ?
Lookup? = ΛK . ΛFMK . ∀V .K → FMK V → Maybe V ,

where Id is the identity function on kinds. From the definition of the generic
look-up function we obtain the following equations:

lookupT ::T :: LookupT IdT FMapT

lookup1 = λV k fmk . fmk
lookupChar = lookupChar
lookup+ = λA FMA lookupA . λB FMB lookupB .

λV k (fmkl , fmkr) . case k of {inl a → lookupA V a fmkl ;
inr b → lookupB V b fmkr }

lookup× = λA FMA lookupA . λB FMB lookupB .
λV (kl , kr) fmk . (lookupA V kl 3 lookupB V kr) fmk

lookupc of = λA FMA lookupA . λV k fmk . lookupA V k fmk .

Just as with type-indexed data types, type-indexed values on type-indexed data
types are specialized by means of an interpretation of the simply typed lambda
calculus. The environment model used for the specialization is somewhat more
involved than the one given in Section 4.3. The domain of the environment model
is a dependent product: the type of the last component (the equivalence class
of the terms of type PolyT D1 . . . Dn) depends on the first n components (the
equivalence classes of the type schemes D1 . . . Dn of kind T). Note that the
application operator applies the term component of its first argument to both
the type and the term components of the second argument.

MT = ([D1 ] ∈ SchemeData1
T / E , . . . , [Dn ] ∈ SchemeDatan

T / E ;
TermPolyT D1 ... Dn / E)

appT,U ([R1 ], . . . , [Rn ]; [t ]) ([S1 ], . . . , [Sn ]; [u ])
= ([R1 S1 ], . . . , [Rn Sn ]; [t S1 . . . Sn u ])

const(C ) = ([Data1
C ], . . . , [Datan

C ]; [polyC ]).

Again, the interpretation of fixed points is the same for different type-indexed
values:

const(FixT) = ([FixData1
T

], . . . , [FixDatan
T

]; [polyFixT
]),

where polyFixT
is given by

polyFixT
= λF1 . . . Fn . λpolyF :: PolyT→T F1 . . . Fn .

fix polyF (FixData1
T

F1) . . . (FixDatan
T

Fn).

4.5 Conversion functions

As can be seen in the example of Section 3, we do not interpret type-indexed
functions and data types on Haskell data types directly, but rather on slightly
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different, yet isomorphic types. Furthermore, since Haskell does not allow re-
cursive type synonyms, we must introduce a newtype for each specialisation
of a type-indexed data type, thereby again creating a different, but isomorphic
type from the one we are interested in. As a consequence, we have to generate
conversion functions between these isomorphic types.

These conversion functions are easily generated, both for type-indexed values
and data types, and can be stored in embedding-projection pairs. The only
difficult task is to plug them in at the right positions. This problem is solved by
lifting the conversion functions to the type of the specialized generic function.
This again is a generic program [13], which makes use of the bimap function
displayed in Figure 2.

BimapT::2 :: IdT → IdT → ?
Bimap? = ΛT1 . ΛT2 .EP T1 T2

bimapT ::T :: BimapT IdT IdT

bimap1 = EP id id
bimapChar = EP id id
bimap+ = λA1 A2 bimapA . λB1 B2 bimapB .

EP (λab → case ab of {inl a → (inl . from bimapA) a;
inr b → (inr . from bimapB ) b})

(λab → case ab of {inl a → (inl . to bimapA) a;
inr b → (inr . to bimapB ) b})

bimap× = λA1 A2 bimapA . λB1 B2 bimapB .
EP (λ(a, b) → (from bimapA a, from bimapB b))

(λ(a, b) → (to bimapA a, to bimapB b))
bimap→ = λA1 A2 bimapA . λB1 B2 bimapB .

EP (λab → from bimapB . ab . to bimapA)
(λab → to bimapB . ab . from bimapA)

bimap∀?
= λF1 F2 bimapF .

EP (λf V . from (bimapF V V (EP id id)) (f V ))
(λf V . to (bimapF V V (EP id id)) (f V ))

bimapc of = λA1 A2 bimapA . bimapA

Fig. 2. Lifting isomorphisms with a generic function.

Consider the generic function

polyT ::T :: PolyT Data1
T . . . Datan

T .

Let epDataT
denote ep T if DataT = IdT , and ep Data T otherwise. The con-

version function can now be derived as

conv poly T = to (bimapPoly?
epData1

T
. . . epDatan

T
).
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For example, the conversion function for the specialization of lookup to Nat is
given by

conv lookup Nat = to (bimapLookup?
ep Nat ep FMap Nat),

which is extensionally the same as the function given in Section 3.
Note that the definition of bimap must include a case for the quantifier

∀? :: (? → ?) → ? since Lookup? is a polymorphic type. In this specific case,
however, polymorphic type indices can be easily handled, see Figure 2. The
further details are exactly the same as for type-indexed values [16, 13], and are
omitted here.

5 An advanced example: the Zipper

This section shows how to define a zipper for an arbitrary data type. This is
a more complex example demonstrating the full power of a type-indexed data
structure together with a number of type-indexed functions working on it.

The zipper is a data structure that is used to represent a tree together with a
subtree that is the focus of attention, where that focus may move left, right, up
or down in the tree. The zipper is used in tools where a user interactively manip-
ulates trees, for instance, in editors for structured documents such as proofs and
programs. For the following it is important to note that the focus of the zipper
may only move to recursive components. Consider as an example the data type
Tree:

data Tree A = empty | node (Tree A) A (Tree A).

If the left subtree of a node constructor is selected, moving right means moving
to the right tree, not to the A-label. This implies that recursive positions in
trees play an important rôle in the definition of a generic zipper data structure.
To obtain access to these recursive positions, we have to be explicit about the
fixed points in data type definitions. The zipper data structure is then defined
by induction on the so-called pattern functor of a data type.

The tools in which the zipper is used, allow the user to repeatedly apply
navigation or edit commands, and to update the focus accordingly. In this section
we define a type-indexed data type for locations, which consist of a subtree (the
focus) together with a context, and we define several navigation functions on
locations.

5.1 Locations

A location is a subtree, together with a context, which encodes the path from
the top of the original tree to the selected subtree. The type-indexed data type
Loc returns a type for locations given an argument pattern functor.

Loc〈F :: ? → ?〉 :: ?
Loc〈F 〉 = (Fix F ,Context〈F 〉 (Fix F ))
Context〈F :: ? → ?〉 :: ? → ?
Context〈F 〉 = ΛR .Fix (ΛC . 1 + Ctx 〈F 〉 C R).



20 R. Hinze, J. Jeuring, and A. Löh

The type Loc is defined in terms Context , which constructs the context pa-
rameterized by the original tree type. The Context of a value is either empty
(represented by 1 in the pattern functor for Context), or it is a path from the
root down into the tree. Such a path is constructed by means of the second
component of the pattern functor for Context : the type-indexed data type Ctx .
The type-indexed data type Ctx is defined by induction on the pattern functor
of the original data type.

Ctx 〈F :: ? → ?〉 :: ? → ? → ?
Ctx 〈Id〉 = ΛC R .C
Ctx 〈K 1〉 = ΛC R . 0
Ctx 〈K Char〉 = ΛC R . 0
Ctx 〈F1 + F2〉 = ΛC R .Ctx 〈F1〉 C R + Ctx 〈F2〉 C R
Ctx 〈F1 × F2〉 = ΛC R . (Ctx 〈F1〉 C R × F2 R) + (F1 R × Ctx 〈F2〉 C R)

This definition can be understood as follows. Since it is not possible to descend
into a constant, the constant cases do not contribute to the result type, which
is denoted by the ‘empty type’ 0. Note that although 0 does not appear in the
grammars for types introduced in Section 2.1, it may appear as the result of a
type-indexed data type. The Id case denotes a recursive component, in which it
is possible to descend. Hence it may occur in a context. Descending in a value of
a sum type follows the structure of the input value. Finally, there are two ways
to descend in a product: descending left, adding the contents to the right of the
node to the context, or descending right, adding the contents to the left of the
node to the context.

For example, for natural numbers with pattern functor K 1 + Id or, equiva-
lently, ΛN . 1+N , and for trees of type Bush whose pattern functor is K Char +
Id × Id or, equivalently, ΛT .Char + (T × T ) we obtain

Context〈K 1 + Id〉 = ΛR .Fix (ΛC . 1 + (0 + C ))
Context〈K Char + Id × Id〉 = ΛR .Fix (ΛC . 1 + (0 + (C × R + R × C ))),

Note that the context of a natural number is isomorphic to a natural number
(the context of m in n is n −m), and the context of a Bush applied to the data
type Bush itself is isomorphic to the type Ctx Bush introduced in Section 1.

We recently found that McBride [27] also defines a type-indexed zipper data
type. His zipper slightly deviates from Huet’s and our zipper: the navigation
functions on McBride’s zipper are not constant time anymore. Interestingly, he
observes that the Context of a data type is its derivative (as in calculus).

5.2 Navigation functions

We define type-indexed functions on the type-indexed data types Loc, Context ,
and Ctx for navigating through a tree. All of these functions act on locations.
These are the basic functions for the zipper.
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Function down. The function down is a type-indexed function that moves down
to the leftmost recursive child of the current node, if such a child exists. Other-
wise, if the current node is a leaf node, then down returns the location unchanged.
The instantiation of down to the data type Bush has been given in Section 1.
The function down satisfies the following property:

∀l . down〈F 〉 l 6= l =⇒ (up〈F 〉 · down〈F 〉) l = l ,

where function up goes up in a tree. So first going down the tree and then up
again is the identity function on locations in which it is possible to go down.

Since down moves down to the leftmost recursive child of the current node,
the inverse equality down〈F 〉·up〈F 〉 = id also does not hold in general. However,
there does exist a natural number n such that

∀l . up〈F 〉 l 6= l =⇒ (right〈F 〉n · down〈F 〉 · up〈F 〉) l = l .

The function down is defined as follows.

down〈F :: ? → ?〉 :: Loc〈F 〉 → Loc〈F 〉
down〈F 〉 (t , c) = case first〈F 〉 (out t) c of

just (t ′, c′) → (t ′, in (inr c′))
nothing → (t , c).

To find the leftmost recursive child, we have to pattern match on the pattern
functor F , and find the first occurrence of Id . The helper function first is a
type-indexed function that possibly returns the leftmost recursive child of a
node, together with the context (a value of type Ctx 〈F 〉 C T ) of the selected
child. The function down then turns this context into a value of type Context
by inserting it in the right (‘non-top’) component of a sum by means of inr , and
applying the fixed point constructor in to it.

first〈F :: ? → ?〉 :: ∀C T .F T → C → Maybe (T ,Ctx 〈F 〉 C T )
first〈Id〉 t c = return (t , c)
first〈K 1〉 t c = fail
first〈K Char〉 t c = fail
first〈F1 + F2〉 (inl x ) c = do {(t , cx ) ← first〈F1〉 x c; return (t , inl cx )}
first〈F1 + F2〉 (inr y) c = do {(t , cy) ← first〈F2〉 y c; return (t , inr cy)}
first〈F1 × F2〉 (x , y) c = do {(t , cx ) ← first〈F1〉 x c; return (t , inl (cx , y))}

++do {(t , cy) ← first〈F2〉 y c; return (t , inr (x , cy))}
Here, (++) is the standard monadic plus, called mplus in Haskell, given by

(++) :: Maybe A → Maybe A → Maybe A
nothing ++ m = m
just a ++ m = just a.

The function first returns the value and the context at the leftmost Id position.
So in the product case, it first tries the left component, and only if it fails, it
tries the right component.
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The definitions of functions up, right and left are not as simple as the defini-
tion of down, since they are defined by pattern matching on the context instead
of on the tree itself. We will just define functions up and right , and leave function
left to the reader.

Function up. The function up moves up to the parent of the current node, if the
current node is not the top node.

up〈F :: ? → ?〉 :: Loc〈F 〉 → Loc〈F 〉
up〈F 〉 (t , c) = case out c of

inl () → (t , c)
inr c′ → do {ft ← insert〈F 〉 c′ t ;

c′′ ← extract〈F 〉 c′;
return (in ft , c′′)}.

Remember that inl () denotes the empty top context. The navigation function
up uses two helper functions: insert and extract . The latter returns the context
of the parent of the current node. Note that each element of type Ctx 〈F 〉 C T
has at most one C component (by an easy inductive argument), which marks
the context of the parent of the current node. The polytypic function extract
extracts this context.

extract〈F :: ? → ?〉 :: ∀C T .Ctx 〈F 〉 C T → Maybe C
extract〈Id〉 c = return c
extract〈K 1〉 c = fail
extract〈K Char〉 c = fail
extract〈F1 + F2〉 (inl cx ) = extract〈F1〉 cx
extract〈F1 + F2〉 (inr cy) = extract〈F2〉 cy
extract〈F1 × F2〉 (inl (cx , y)) = extract〈F1〉 cx
extract〈F1 × F2〉 (inr (x , cy)) = extract〈F2〉 cy

Here, return is obtained from the Maybe monad and fail is shorthand for nothing .
Note that extract is polymorphic in C and in T .

Function insert takes a context and a tree, and inserts the tree in the current
focus of the context, effectively turning a context into a tree.

insert〈F :: ? → ?〉 :: ∀C T .Ctx 〈F 〉 C T → T → Maybe (F T )
insert〈Id〉 c t = return t
insert〈K 1〉 c t = fail
insert〈K Char〉 c t = fail
insert〈F1 + F2〉 (inl cx ) t = do {x ← insert〈F1〉 cx t ; return (inl x )}
insert〈F1 + F2〉 (inr cy) t = do {y ← insert〈F2〉 cy t ; return (inr y)}
insert〈F1 × F2〉 (inl (cx , y)) t = do {x ← insert〈F1〉 cx t ; return (x , y)}
insert〈F1 × F2〉 (inr (x , cy)) t = do {y ← insert〈F2〉 cy t ; return (x , y)}.

Note that the extraction and insertion is happening in the identity case Id ; the
other cases only pass on the results.
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Since up〈F 〉 · down〈F 〉 = id on locations in which it is possible to go down,
we expect similar equalities for the functions first , extract , and insert . We have
that the following computation

do {(t , c′) ← first〈F 〉 ft c;
c′′ ← extract〈F 〉 c′;
ft ′ ← insert〈F 〉 c′ t ;
return (c c′′ ∧ ft ft ′ ) }

returns true on locations in which it is possible to go down.

Function right. The function right moves the focus to the next sibling to the
right in a tree, if it exists. The context is moved accordingly. The instance of
right on the data type Bush has been given in Section 1. The function right
satisfies the following property:

∀l . right〈F 〉 l 6= l =⇒ (left〈F 〉 · right〈F 〉) l = l ,

that is, first going right in the tree and then left again is the identity function on
locations in which it is possible to go to the right. Of course, the dual equality
holds on locations in which it is possible to go to the left.

Function right is defined by pattern matching on the context. It is impossible
to go to the right at the top of a value. Otherwise, we try to find the right sibling
of the current focus.

right〈F :: ? → ?〉 :: Loc〈F 〉 → Loc〈F 〉
right〈F 〉 (t , c) = case out c of

inl () → (t , c)
inr c′ → case next〈F 〉 t c′ of

just (t ′, c′′) → (t ′, in (inr c′′))
nothing → (t , c).

The helper function next is a type-indexed function that returns the first location
that has the recursive value to the right of the selected value as its focus. Just
as there exists a function left such that left〈F 〉 · right〈F 〉 = id (on locations in
which it is possible to go to the right), there exists a function previous, such
that

do {(t ′, c′) ← next〈F 〉 t c;
(t ′′, c′′) ← previous〈F 〉 t ′ c′;
return (c c′′ ∧ t t ′′)}
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returns true (on locations in which it is possible to go to the right). We will
define function next , and omit the definition of function previous.

next〈F :: ? → ?〉 :: ∀C T .T → Ctx 〈F 〉 C T → Maybe (T ,Ctx 〈F 〉 C T )
next〈Id〉 t c = fail
next〈K 1〉 t c = fail
next〈K Char〉 t c = fail
next〈F1 + F2〉 t (inl cx ) = do {(t ′, cx ′) ← next〈F1〉 t cx ; return (t ′, inl cx ′)}
next〈F1 + F2〉 t (inr cy) = do {(t ′, cy ′) ← next〈F2〉 t cy ; return (t ′, inr cy ′)}
next〈F1 × F2〉 t (inl (cx , y))

= do {(t ′, cx ′) ← next〈F1〉 t cx ; return (t ′, inl (cx ′, y))}
++ do {c ← extract〈F1〉 cx ;

x ← insert〈F1〉 cx t ;
(t ′, cy) ← first〈F2〉 y c;
return (t ′, inr (x , cy))}

next〈F1 × F2〉 t (inr (x , cy))
= do {(t ′, cy ′) ← next〈F2〉 t cy ; return (t ′, inr (x , cy ′))}.

The first three lines in this definition show that it is impossible to go to the
right in an identity or constant context. If the context argument is a value of a
sum, we select the next element in the appropriate component of the sum. The
product case is the most interesting one. If the context is in the right component
of a pair, next returns the next value of that context, properly combined with
the left component of the tuple. On the other hand, if the context is in the left
component of a pair, the next value may be either in that left component (the
context), or it may be in the right component (the value). If the next value is in
the left component, it is returned by the first line in the definition of the product
case. If it is not, next extracts the context c (the context of the parent) from the
left context cx , it inserts the given value in the context cx giving a ‘tree’ value
x , and selects the first component in the right component of the pair, using the
extracted context c for the new context. The new context that is thus obtained
is combined with x into a context for the selected tree.

6 Conclusion

We have shown how to define type-indexed data types, and we have given several
examples of type-indexed data types: digital search trees, the zipper, and la-
belling a data type. Furthermore, we have shown how to specialize type-indexed
data types and type-indexed functions that take values of type-indexed data
types as arguments. The treatment generalizes the specialization of type-indexed
functions given in Hinze [15], and is used in the implementation of Generic
Haskell, a generic programming extension of the functional language Haskell.
The first release of Generic Haskell was published on 1st November 2001, see
http://www.generic-haskell.org/. A technical overview of the compiler can
be found in De Wit’s thesis [7]. The next release will contain an experimental
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implementation of type-indexed data types. Check the webpage or contact the
authors for a preliminary version.

A type-indexed data type is defined in a similar way as a type-indexed func-
tion. The only difference is that the ‘type’ of a type-indexed data type is a
kind instead of a type. Note that a type-indexed data type may also be a type
constructor, it need not necessarily be a type of kind ?. For instance, Label is
indexed by types of kind ? → ? and yields types of kind ? → ? → ?.

There are several things that remain to be done. We want to test our frame-
work on the type-indexed data types appearing in the literature [3, 10, 34], and
we want to create a library of recurring examples. Furthermore, we have to inves-
tigate how we can deal with sets of mutually recursive type-indexed data types
(this extension requires tuples on the kind level).

Acknowledgements. Thanks are due to Dave Clarke, Ralf Lämmel, Doaitse
Swierstra, and the anonymous referees for comments on previous versions of
the paper. Jan de Wit suggested an improvement in the labelling functions.
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