
Under consideration for publication in J. Functional Programming 1

Generics for the masses

RALF HINZE
Institut für Informatik III, Universität Bonn

Römerstraße 164, 53117 Bonn, Germany
(e-mail: ralf@informatik.uni-bonn.de)

Abstract

A generic function is a function that can be instantiated on many data types to obtain
data type specific functionality. Examples of generic functions are the functions that can
be derived in Haskell, such as show , read , and ‘ ’. The recent years have seen a number
of proposals that support the definition of generic functions. Some of the proposals define
new languages, some define extensions to existing languages. As a common characteristic
none of the proposals can be made to work within Haskell 98: they all require something
extra, either a more sophisticated type system or an additional language construct. The
purpose of this paper is to show that one can, in fact, program generically within Haskell 98
obviating to some extent the need for fancy type systems or separate tools. Haskell’s type
classes are at the heart of this approach: they ensure that generic functions can be defined
succinctly and, in particular, that they can be used painlessly. We detail three different
implementations of generics both from a practical and from a theoretical perspective.

1 Introduction

A type system is like a suit of armour: it shields against the modern dangers of
illegal instructions and memory violations, but it also restricts flexibility. The lack
of flexibility is particularly vexing when it comes to implementing fundamental
operations such as showing a value or comparing two values. In a statically typed
language such as Haskell 98 (Peyton Jones, 2003) it is simply not possible to define
an equality test that works for all types. Polymorphism does not help: equality is not
a polymorphic function since it must inspect its arguments. Static typing dictates
that equality becomes a family of functions containing a tailor-made instance of
equality for each type of interest. Rather annoyingly, all these instances have to be
programmed.

More than a decade ago the designers of Haskell noticed and partially addressed
this problem. By attaching a so-called deriving form to a data type declaration the
programmer can instruct the compiler to generate an instance of equality for the
new type.1 In fact, the deriving mechanism is not restricted to equality: parsers,
pretty printers and several other functions are derivable, as well. These functions

1 Actually, in Haskell 1.0 the compiler would always generate an instance of equality. A deriving
form was used to restrict the instances generated to those mentioned in the form. To avoid the
generation of instances altogether, the programmer had to supply an empty deriving clause.

2 R. Hinze

have to become known as data-generic or polytypic functions, functions that work
for a whole family of types. Unfortunately, Haskell’s deriving mechanism is closed:
the programmer cannot introduce new generic functions.

The recent years have seen a number of proposals (Jansson & Jeuring, 1997; Hinze
& Peyton Jones, 2001; Cheney & Hinze, 2002; Hinze & Jeuring, 2003b; Norell &
Jansson, 2003) that support exactly this, the definition of generic functions. Some
of the proposals define new languages, some define extensions to existing languages.
However, none of the proposals can be made to work within Haskell 98: they all
require something extra, either a more sophisticated type system or an additional
language construct.

The purpose of this paper is to show that one can, in fact, program generically
within Haskell 98 obviating to some extent the need for fancy type systems or
separate tools. The proposed approach is extremely light-weight; each implementa-
tion of generics—we will introduce three major ones and a few variations—consists
roughly of two dozen lines of Haskell code. The technique is surprisingly expressive:
we can define all the generic functions presented, for instance, in (Hinze, 2002).
Of course, there are also limitations: for instance, defining functions that involve
generic types (Hinze et al., 2004) seems out of reach. On the other hand, the code
can be easily adapted to one’s needs. Indeed, the reader is cordially invited to play
with the material. The source code can be found at

http://www.informatik.uni-bonn.de/~ralf/masses.tar.bz2

We have also included several exercises to support digestion of the material and to
stimulate further experiments.

The rest of the paper is structured as follows. The first part, consisting of Sec-
tions 2, 3 and 4, introduces three implementations of generics. This part is largely
written in a tutorial style introducing the approach to a potential user, that is, a
generic programmer. The theoretical background is then investigated in the second
part, Section 5, which derives the two major approaches from first principles. The
two parts are largely independent. The reader who is keen to see the inner workings
may wish to skim through the first part, read the second part and then go back
to the first. Finally, Section 6 summarizes the main points and Section 7 provides
references for further studies and reviews related work.

2 Generic functions on types

This section discusses our first implementation of generics. Section 2.1 shows how
to embed a generic definition into Haskell 98 covering what you would expect from
a paper on generics. However, this is not the whole story. Whenever the user defines
a new data type, she has to do a bit of extra work so that a generic function can be
instantiated to that type. This extra work is detailed in Section 2.2. Furthermore,
some additional code is needed, which is shared among the generic definitions.
Section 2.3 provides the details.

Most if not all approaches to generics contain these three facets: code for generic
definitions, per data type code, and shared library code. In most cases, however,

Generics for the masses 3

the per data type code is not burdened upon the generic programmer but is gen-
erated automatically. In a sense, this is the price we have to pay for staying within
Haskell 98. On the other hand, since neither language extensions nor compiler mod-
ifications are required, the approach can be easily modified or extended. Section 2.4
takes a look at various extensions, some obvious and some perhaps less so.

2.1 Defining a generic function

Let us tackle a concrete problem. Suppose we want to encode elements of various
data types as bit strings implementing a simple form of data compression. For
simplicity, we represent a bit string by a list of bits.

type Bin = [Bit]

data Bit = 0 | 1 deriving (Show)

bits :: (Enum α)⇒ Int → α→ Bin

We assume a function bits that encodes an element of an enumeration type using
the specified number of bits. We seek to generalize bits to a function showBin that
works for arbitrary types. Here is a simple interactive session that illustrates the
use of showBin (note that characters consume 7 bits and integers 16 bits).

Main〉 showBin 3
[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Main〉 showBin [3, 5]
[1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Main〉 showBin "Lisa"

[1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0]

A string of length n, for instance, is encoded in 8 ∗ n + 1 bits.
Implementing showBin so that it works for arbitrary data types seems like a

hard nut to crack. The good news is that it suffices to define showBin for primitive
types and for three elementary types: the one-element type, the binary sum, and
the binary product.

data Unit = Unit

data Plus α β = Inl α | Inr β

data Pair α β = Pair{outl :: α, outr :: β}
As an aside, the latter definition uses Haskell’s record syntax to simultaneously
introduce a constructor function Pair :: α → β → Pair α β and two selector
functions outl :: Pair α β → α and outr :: Pair α β → β.

Why these three types? Well, Haskell’s construct for defining new types, the
data declaration, introduces a type that is isomorphic to a sum of products. Thus,
if we know how to compress sums and products, we can compress elements of an
arbitrary data type. More generally, we can handle a type σ if we can handle some
representation type τ that is isomorphic to σ. The details of the representation type
are largely irrelevant, so we abstract away from them: When programming a generic
function it suffices to know the two mappings that witness the isomorphism.

4 R. Hinze

data Iso α β = Iso{fromData :: β → α, toData :: α→ β}
In what follows β will always be the original data type and α its representation
type.

Turning to the implementation of showBin, we first have to provide the signature
of the generic function. Rather unusually, we specify the type using a newtype
declaration.

newtype ShowBin α = ShowBin{appShowBin :: α→ Bin }
An important point is that you should read the above declaration as a type signa-
ture; the newtype declaration is just an idiom for embedding generics in Haskell 98.

An element of ShowBin σ is an instance of showBin that encodes values of
type σ as bit strings. We know that the generic function showBin itself cannot be
a genuine polymorphic function of type α→ Bin. Data compression does not work
for arbitrary types, but only for types that are representable. Representable means
that the type can be represented by a certain value. For the moment, it suffices to
know that a type representation is simply an overloaded value called rep. The first
part of the generic compression function is then given by the following definition.

showBin :: (Rep α)⇒ α→ Bin
showBin = appShowBin rep

Loosely speaking, we apply the generic function to the type representation rep.
Of course, this is not the whole story. The code above defines only a convenient
shortcut. The actual definition of showBin is provided by an instance declaration,
but you should read it instead as just a generic definition.

instance Generic ShowBin where
unit = ShowBin (λx → [])
plus = ShowBin (λx → case x of Inl l → 0 : showBin l

Inr r → 1 : showBin r)
pair = ShowBin (λx → showBin (outl x) ++ showBin (outr x))
datatype iso = ShowBin (λx → showBin (fromData iso x))
char = ShowBin (λx → bits 7 x)
int = ShowBin (λx → bits 16 x)

The class Generic has six member functions corresponding to the elementary types,
Unit , Plus, and Pair , and to a small selection of primitive types, Char and Int .
The member function datatype, which slightly breaks ranks, deals with arbitrary
data types. Each method binding defines the instance of the generic function for
the corresponding type. Let us consider each case in turn. To encode the single
element of the type Unit no bits are required (read: the instance of showBin for
the Unit type is λx → []). To encode an element of a sum type, we emit one bit for
the constructor followed by the encoding of its argument. The encoding of a pair is
given by the concatenation of the component’s encodings. To encode an element of
an arbitrary data type, we first convert the element into a sum of products, which is
then encoded. Finally, characters and integers are encoded using the function bits.

That’s it, at least, as far as the generic function is concerned. Figure 1 summarizes

Generics for the masses 5

newtype Poly α = Poly{appPoly :: π α}
poly :: (Rep α) ⇒ π α
poly = appPoly rep

instance Generic Poly where
unit = Poly (. . .)
plus = Poly (. . . poly . . . poly . . .)
pair = Poly (. . . poly . . . poly . . .)
datatype iso = Poly (. . . (fromData iso) . . . poly . . . (toData iso) . . .)
char = Poly (. . .)
int = Poly (. . .)

Fig. 1. A template for generic definitions on types.

the idioms you have to use for defining a generic function poly of type π α, where
α marks the generic part (the parts in ellipsis have to be filled in). Before we can
actually compress data to strings of bits, we first have to turn the types of the
to-be-compressed values into representable types, which is what we will do next.

Exercise 1. Implement a generic version of Haskell’s comparison function compare ::
(Rep α) ⇒ α → α → Ordering . Follow the scheme above: first turn the signature
into a newtype declaration, then define compare, and finally provide an instance
of Generic.

Exercise 2. Implement a function readBin :: (Rep α) ⇒ Bin → α that decodes a
bit string that was encoded by showBin.

2.2 Defining a new type

A generic function such as showBin can only be instantiated to a representable type.
By default, only the elementary types, Unit , Plus, and Pair , and the primitive types
Char and Int are representable. So, whenever we define a new data type and we
intend to use a generic function on that type, we have to do a little bit of extra
work. As an example, consider the data type of binary leaf trees.

data Tree α = Leaf α | Fork (Tree α) (Tree α)

We have to show that this type is representable. To this end we exhibit an isomor-
phic type built from representable type constructors. We call this type the structure

type of Tree, denoted Tree ′.

type Tree ′ α = Plus α (Pair (Tree α) (Tree α))

The main work goes into defining two mappings, fromTree and toTree, which certify
that Tree α and its structure type Tree ′ α are indeed isomorphic.

6 R. Hinze

instance (Rep α)⇒ Rep (Tree α) where
rep = datatype (Iso fromTree toTree)

fromTree :: Tree α→ Tree ′ α

fromTree (Leaf x) = Inl x
fromTree (Fork l r) = Inr (Pair l r)

toTree :: Tree ′ α→ Tree α

toTree (Inl x) = Leaf x
toTree (Inr (Pair l r)) = Fork l r

Perhaps surprisingly, the structure type may contain the original type. This is
valid and, in fact, the standard approach for recursive types since the original type
becomes representable by virtue of the instance declaration.

Remark 1
Strictly speaking, the type Tree α and its structure type Tree ′ α are not isomorphic
in Haskell since Plus is a lifted sum. This can be safely ignored if the trees on
which the generic functions operate are always fully defined. We have to be careful,
however, if the functions also deal with partial trees. In this case, the definition of
toTree should be changed to

toTree (Inl x) = Leaf x
toTree (Inr (∼(Pair l r))) = Fork l r

so that Inr ⊥ is mapped to Fork ⊥ ⊥ rather than ⊥. In general, we have to take
care that the mapping to the data type is sufficiently lazy.

As a second example, here is the encoding of Haskell’s list data type.

type List ′ α = Plus Unit (Pair α [α])

instance (Rep α)⇒ Rep [α] where
rep = datatype (Iso fromList toList)

fromList :: [α]→ List ′ α

fromList [] = Inl Unit
fromList (x : xs) = Inr (Pair x xs)

toList :: List ′ α→ [α]
toList (Inl Unit) = []
toList (Inr (Pair x xs)) = x : xs

The Unit type is used for encoding constructors with no arguments. If a data type
has more than two alternatives, or if a constructor has more than two arguments,
we have to nest the binary type constructors Plus and Pair accordingly. Actually,
we are more flexible than this: we can map the new type to any other type as long as
the target type is an instance of Rep. For instance, we could map elements of some
efficient sequence type (Okasaki, 1997) to lists. This flexibility is even necessary if
the structure of a type is not available as in the case of abstract types. Figure 2
summarizes the per data type work.

Exercise 3. Turn the following types into instances of Rep.

Generics for the masses 7

type T ′ α1 . . . αn = . . .

instance (Rep α1, . . . ,Rep αn) ⇒ Rep (T α1 . . . αn) where
rep = datatype (Iso fromT toT)

fromT :: T α1 . . . αn → T ′ α1 . . . αn

fromT = . . .

toT :: T ′ α1 . . . αn → T α1 . . . αn

toT = . . .

Fig. 2. A template for making types representable.

data Shrub α β = Tip α | Node (Shrub α β) β (Shrub α β)

data Rose α = Branch α [Rose α]

Exercise 4. Write a program that takes a data type definition and generates the
Haskell source for the Rep instance. Use a tool such as DrIFT (2005) or the Template
Haskell extension (Sheard & Peyton Jones, 2002) if you like.

2.3 Implementing the shared library code

The implementation of light-weight generics is surprisingly concise: apart from
declaring the two classes, Generic and Rep, we only provide a handful of instance
declarations. To begin with, the class Generic accommodates the different instances
of a generic function.

class Generic g where
unit :: g Unit
plus :: (Rep α,Rep β)⇒ g (Plus α β)
pair :: (Rep α,Rep β)⇒ g (Pair α β)
datatype :: (Rep α)⇒ Iso α β → g β

char :: g Char
int :: g Int

The class abstracts over the type constructor g , the type of a generic function. This
is why unit has type g Unit . In the case of Plus and Pair the corresponding method
has an additional context that constrains the type arguments of Plus and Pair to
representable types. This context is necessary so that a generic function can recurse
on the component types. In fact, the context allows us to call any generic function,
so that we can easily define mutually recursive generic functions. We will see an
example of this in the next section.

As a technical aside, in the introductory example in Section 2.1 the type construc-
tor g was ShowBin. Since Haskell restricts class instances to data types, introduced
by data or newtype declarations, the type signature of a generic function must
be given by a newtype rather than a type definition.

Now, what does it mean for a type to be representable? For our purposes, this
simply means that we can instantiate a generic function to that type. So an intrigu-
ing choice is to identify type representations with generic functions.

8 R. Hinze

class Rep α where
rep :: (Generic g)⇒ g α

Note that the type variable g is implicitly universally quantified: the type repre-
sentation must work for all types g that are instances of Generic. This is quite a
strong requirement. How can we possibly define an instance of Rep? The answer
lies in the type of rep: we have to use the methods of class Generic. Recall that
unit has type (Generic g) ⇒ g Unit . Thus, we can turn Unit into an instance of
Rep.

instance Rep Unit where
rep = unit

instance (Rep α,Rep β)⇒ Rep (Plus α β) where
rep = plus

instance (Rep α,Rep β)⇒ Rep (Pair α β) where
rep = pair

instance Rep Char where
rep = char

instance Rep Int where
rep = int

Strange as the instance declarations may possibly seem, each of them has a logical
explanation. A type is representable if we can instantiate a generic function to
that type. But the class Generic just contains the instances of generic functions.
Thus, each method of Generic with the notable exception of datatype gives rise to
an instance declaration. We have seen in Section 2.2 that the method datatype is
used to make an arbitrary type an instance of Rep. The procedure described in
Section 2.2 is, in fact, dictated by datatype’s type (Rep α) ⇒ Iso α β → g β: to
make β representable we have to provide an isomorphic type α which in turn is
representable.

The type of rep, namely, (Rep α,Generic g) ⇒ g α is quite remarkable. In a
sense, rep can be seen as the mother of all generic functions. This explains, in
particular, the definition of showBin in Section 2.1: the field selector appShowBin
has type ShowBin α → (α → Bin); the application appShowBin rep implicitly
instantiates rep’s type to (Rep α) ⇒ ShowBin α, which the field selector then
turns to (Rep α)⇒ α→ Bin. Note that the classes Generic and Rep are mutually
recursive: each class lists the other one in a method context.

2.4 Extensions

2.4.1 Additional type cases

The class Generic can be seen as implementing a case analysis on types. Each
method corresponds to a case branch. Types not listed as class methods are handled
completely generically. However, this is not always what is wanted. As an example,
recall that the encoding of a list of length n takes n + 1 bits plus the space for the
encoding of the elements. A better method is to first encode the length of the list

Generics for the masses 9

and then to concatenate the encodings of the elements. In order to treat the list
type as a separate case, we have to add a new method to the class Generic.

class Generic g where
. . .

list :: (Rep α)⇒ g [α]
list = datatype (Iso fromList toList)

instance (Rep α)⇒ Rep [α] where
rep = list

So, the bad news is that we have to change a class definition, which suggests that
Generic is not a good candidate for inclusion in a library (unless one can anticipate
all future type cases). The good news is that by supplying a default definition for
list this change does not affect any of the instance declarations: all the generic
functions work exactly as before. In other words, the modification is a very local
one but requires access to the source code. The new ShowBin instance overrides
the default definition.

instance Generic ShowBin where
. . .

list = ShowBin (λx → bits 16 (length x) ++ concatMap showBin x)

The technique relies on Haskell’s concept of default class methods: only if the
instance does not provide a binding for the list method, then the default class
method is used.

Exercise 5. Adopt readBin to the new encoding of lists.

2.4.2 A default type case

Using the same technique we can also implement a default or catch-all type case.

class Generic g where
. . .

default :: (Rep α)⇒ g α

unit = default
plus = default
pair = default
char = default
int = default

Now, the generic programmer can either define unit , plus, pair , char , int or simply
default (in addition to datatype).2 A default type case is useful for saying ‘treat all
the type cases not explicitly listed in the following way’. We will see an example
application in Section 2.4.4.

2 Unfortunately, if we specify all the type cases except default , we get a compiler warning saying
that there is no explicit method nor default method for default .

10 R. Hinze

2.4.3 Accessing constructor names

So far, the structure type captures solely the structure of a data type, hence its
name. However, in Haskell there is more to a data type than this: a data constructor
has a unique name, an arity, possibly a fixity, and possibly named fields. We are free
to add all this information to the structure type. There are, in fact, several ways
to accomplish this: we discuss one alternative in the sequel, Exercise 6 sketches a
second one.

To record the properties of a data constructor we use the data type Constr—we
confine ourselves to name and arity.

type Name = String

type Arity = Int

data Constr α = Constr{name :: Name,

arity :: Arity ,

arg :: α}
As an example, here is a suitable redefinition of fromTree and toTree.

type Tree ′ α = Plus (Constr α) (Constr (Pair (Tree α) (Tree α)))

fromTree :: Tree α→ Tree ′ α

fromTree (Leaf x) = Inl (Constr "Leaf" 1 x)
fromTree (Fork l r) = Inr (Constr "Fork" 2 (Pair l r))

toTree :: Tree ′ α→ Tree α

toTree (Inl (Constr n a x)) = Leaf x
toTree (Inr (Constr n a (Pair l r))) = Fork l r

Note that, for reasons explained below, toTree simply discards the additional Constr
wrapper. So strictly, the two functions do not define an isomorphism. This is not a
problem, however, as long as we do not cheat with the constructor names (such as
attaching Constr "Leaf" 1 to the representation of a Fork constructor).

It remains to introduce a new type case for constructors and to add Constr to
the league of representable types.

class Generic g where
. . .

constr :: (Rep α)⇒ g (Constr α)
constr = datatype (Iso arg wrap)

where wrap a = Constr ⊥ ⊥ a

instance (Rep α)⇒ Rep (Constr α) where
rep = constr

Note that arg , which is used in the default method for constr , is a field selector of
the data type Constr . It is important that we have a default case for constr so that
a generic function that does not require the additional information need not define
a constr case. Since the helper function wrap necessarily adds undefined name and
arity fields, the mapping toTree and colleagues have to ignore the decoration.

Figure 3 displays a simple pretty printer, based on Wadler’s prettier printing

Generics for the masses 11

newtype Pretty α = Pretty{appPretty :: α → Doc}
pretty :: (Rep α) ⇒ α → Doc
pretty = appPretty rep

instance Generic Pretty where
unit = Pretty (λx → empty)
plus = Pretty (λx → case x of Inl l → pretty l

Inr r → pretty r)
pair = Pretty (λx → pretty (outl x) 〈〉 line 〈〉 pretty (outr x))
datatype iso

= Pretty (λx → pretty (fromData iso x))
char = Pretty (λx → prettyChar x)
int = Pretty (λx → prettyInt x)
list = Pretty (λx → prettyl pretty x)
constr = Pretty (λx → let s = text (name x) in

if arity x 0
then s
else group (nest 1 (text "(" 〈〉 s 〈〉 line

〈〉 pretty (arg x) 〈〉 text ")")))
prettyl :: (α → Doc) → ([α] → Doc)
prettyl p [] = text "[]"
prettyl p (a : as) = group (nest 1 (text "[" 〈〉 p a 〈〉 rest as))

where rest [] = text "]"
rest (x : xs) = text "," 〈〉 line 〈〉 p x 〈〉 rest xs

Fig. 3. A generic prettier printer

library (2003), that puts the additional information to good use. The plus case
discards the constructors Inl and Inr as they are not needed for showing a value.
The constr case signals the start of a constructed value. If the constructor is nullary,
its string representation is emitted. Otherwise, the constructor name is printed
followed by a space followed by the representation of its arguments. The pair case
applies if a constructor has more than one component. In this case the components
are separated by a space. Finally, list takes care of printing lists using standard list
syntax: comma-separated elements between square brackets.

The approach above works well for pretty printing but, unfortunately, fails for
parsing. The problem is that the constructor names are attached to a value. Con-
sequently, this information is not available when parsing a string. The important
point is that parsing produces (not consumes) a value, and yet it requires access to
the constructor name. An alternative approach, discussed in the exercise below, is
to attach the information to the type (more accurately, to the type representation).

Exercise 6. Augment the datatype method by an additional argument

datatype :: (Rep α)⇒ DataDescr → Iso α β → g β

that records information about the data type and its constructors. Re-implement
the pretty printer using this modification instead of the constr case. Hint: also
extend pretty by a DataDescr argument.

12 R. Hinze

Exercise 7. Use the extension of the previous exercise and a parser library of your
choice to implement a generic parser analogous to Haskell’s read method.

2.4.4 Mutual recursion

In Haskell, the Show class takes care of pretty printing. The class is very carefully
crafted so that strings, which are lists of characters, are shown in double quotes,
rather than between square brackets. It is instructive to re-program this behaviour
as the new code requires all three extensions introduced above.

Basically, we have to implement a nested case analysis on types. The outer type
case checks whether we have a list type; the inner type case checks whether the
type argument of the list type constructor is Char . In our setting, a nested type
case can be encoded using a pair of mutually recursive generic functions. The first
realizes the outer type case.

instance Generic Pretty where
. . .

list = Pretty (λx → prettyList x)

The instance declaration is the same as before, except that the list method dis-
patches to the second function which corresponds to the inner type case.

newtype PrettyList α = PrettyList{appPrettyList :: [α]→ Doc}
prettyList :: (Rep α)⇒ [α]→ Doc
prettyList = appPrettyList rep

instance Generic PrettyList where
char = PrettyList (λx → prettyString x)
datatype iso = PrettyList (λx → prettyl prettyd x)

where prettyd = pretty · fromData iso
list = default
default = PrettyList (λx → prettyl pretty x)

The PrettyList instance makes use of a default type case which implements the orig-
inal behaviour (comma-separated elements between square brackets). The datatype
method is similar to default except that the list elements are first converted to the
structure type. Note that the list method must be explicitly set to default because
it has the ‘wrong’ default class method: datatype (Iso fromList toList) instead of
default . Finally, the char method takes care of printing strings in double quotes.

3 Generic functions on type constructors

Let us now turn to an alternative implementation of generics, which will increase
flexibility at the cost of automation.

The generic functions introduced in the last section abstract over a type. For
instance, showBin generalizes functions of type

Char → Bin, String → Bin, [[Int]]→ Bin

Generics for the masses 13

to a single generic function of type

(Rep α)⇒ α→ Bin

A generic function may also abstract over a type constructor. Take, as an example,
a function that counts the number of elements contained in a data structure (a
container). Such a function generalizes functions of type

[α]→ Int , Tree α→ Int , [Rose α]→ Int

to a single generic function of type

(FRep ϕ)⇒ ϕ α→ Int

The class context makes explicit that counting elements does not work for arbitrary
type constructors, but only for representable ones.

When type constructors come into play, typings often become ambiguous. Imag-
ine applying a generic size function to a data structure of type [Rose Int]. Shall
we count the number of rose trees in the list, or the number of integers in the list
of rose trees? Because of this inherent ambiguity, the second implementation of
generics will be more explicit about types and type representations.

This section is structured like the previous one: Section 3.1 introduces the format
of generic definitions. Section 3.2 details the extra work for each newly defined data
type, and Section 3.3 lists the shared library code. Finally, Section 3.4 takes a look
at some extensions. Note that we shall re-use the class and method names even
though the types of the class methods are slightly different.

3.1 Defining a generic function

Let us again start with a concrete example. Here is the implementation of a generic
counter.

newtype Count α = Count{appCount :: α→ Int }
instance Generic Count where

unit = Count (λx → 0)
plus a b = Count (λx → case x of Inl l → appCount a l

Inr r → appCount b r)
pair a b = Count (λx → appCount a (outl x) + appCount b (outr x))
datatype iso a

= Count (λx → appCount a (fromData iso x))
char = Count (λx → 0)
int = Count (λx → 0)

The new version of the class Generic has the same member functions as before, but
with slightly different typings: the cases corresponding to type constructors, plus,
pair and datatype, now take explicit type arguments, a and b, which are passed to
the recursive calls. Of course, we do not pass types as arguments, but rather type
representations.

Though the class is a bit different, we are still able to define all the generic

14 R. Hinze

functions we have seen before. In particular, we can apply appCount to rep to obtain
a generic function of type (Rep α)⇒ α→ Int . However, the result is not interesting
at all: the function appCount rep always returns 0 (provided its argument is fully
defined). Instead, we apply appCount to frep, the generic representation of a type
constructor.

size :: (FRep ϕ)⇒ ϕ α→ Int
size = appCount (frep (Count (λx → 1)))

Since frep represents a type constructor, it takes an additional argument, which
specifies the action of size on the base type α: the function λx → 1 makes precise
that each element of type α counts as 1. Interestingly, this is not the only option.
If we pass the identity to frep, then we get a generic sum function.

sum :: (FRep ϕ)⇒ ϕ Int → Int
sum = appCount (frep (Count (λx → x)))

Two generic functions for the price of one!
When size and sum are applied to some value, Haskell’s type inferencer deter-

mines the particular instance of the type constructor ϕ. We have noted in the
introduction that there are, in general, several possible alternatives for ϕ. If we are
not happy with Haskell’s choice, we can always specify the type explicitly (list is
the representation of the list data type).

Main〉 let xss = [[i ∗ j | j ← [i . . 9]] | i ← [0 . . 9]]
Main〉 size xss
10
Main〉 let a = Count (λx → 1)
Main〉 appCount (list (list a)) xss
55
Main〉 appCount (list a) xss
10
Main〉 appCount a xss
1

By default, size calculates the size of the outer list, not the total number of el-
ements. For the latter behaviour, we must pass an explicit type representation to
appCount . This is something which is not possible with the first implementation of
generics. Figure 4 summarizes the idioms for defining a generic function in the new
style.

Exercise 8. Generalize size and sum so that they work for arbitrary numeric types.

size :: (FRep ϕ,Num η)⇒ ϕ α→ η

sum :: (FRep ϕ,Num η)⇒ ϕ η → η

Exercise 9. The function reducer whose signature is given below generalizes Haskell’s
foldr function (reducer swaps the second and the third argument).

Generics for the masses 15

newtype Poly α = Poly{appPoly :: π α}
instance Generic Poly where

unit = Poly (. . .)
plus a b = Poly (. . . (appPoly a) . . . (appPoly b) . . .)
pair a b = Poly (. . . (appPoly a) . . . (appPoly b) . . .)
datatype iso a = Poly (. . . (fromData iso) . . . (appPoly a) . . . (toData iso) . . .)
char = Poly (. . .)
int = Poly (. . .)

poly :: (FRep ϕ) ⇒ π (ϕ . . .)
poly = appPoly (frep (Poly (. . .)))

Fig. 4. A template for generic definitions on type constructors.

newtype Reducer β α = Reducer{appReducer :: α→ β → β}
instance Generic (Reducer β)

reducer :: (FRep ϕ)⇒ (α→ β → β)→ (ϕ α→ β → β)
reducer f = appReducer (frep (Reducer f))

Fill in the missing details. Use reducer to define a function that flattens a data
structure into a list of elements. Define sum in terms of reducer .

3.2 Introducing a new type

As before, we have to do a bit of extra work when we define a new data type. The
main difference to Section 2.2 is that we must explicitly provide the structure type:
the method datatype now expects the structure type as its second argument. At
first sight, providing this information seems to be a lot less elegant, but it turns
out to be fairly advantageous.

Reconsider the data type Tree. Since it is a type constructor rather than a type,
we first define a ‘type constructor representation’.

tree :: (Generic g)⇒ g α→ g (Tree α)
tree a = datatype (Iso fromTree toTree) (a ⊕ tree a ⊗ tree a)

The operators ‘⊕’ and ‘⊗’ are convenient shortcuts for plus and pair .

infixr 3 ⊗
infixr 2 ⊕
a ⊕ b = plus a b
a ⊗ b = pair a b

The type constructor Tree can be seen as a function that takes types to types.
Likewise, tree is a function that takes type representations to type representations.
The structure type a ⊕ tree a ⊗ tree a makes explicit, that Tree is a binary sum,
that the first constructor takes a single argument of type α, and that the second
constructor takes two arguments of type Tree α. Using tree we can now provide
suitable instances of Rep and FRep.

16 R. Hinze

type T ′ α1 . . . αn = . . .

t :: (Generic g) ⇒ g α1 → · · · → g αn → g (T α1 . . . αn)
t a1 . . . an = datatype (Iso fromT toT) (t ′ a1 . . . an)

-- here, t ′ a1 . . . an is the representation of the structure type T ′ α1 . . . αn

fromT :: T α1 . . . αn → T ′ α1 . . . αn

fromT = . . .

toT :: T ′ α1 . . . αn → T α1 . . . αn

toT = . . .

instance (Rep α1, . . . ,Rep αn) ⇒ Rep (T α1 . . . αn) where
rep = t rep . . . rep -- n copies of rep

-- if T has at least one type argument:
instance (Rep α1, . . . ,Rep αn−1) ⇒ FRep (T a1 . . . αn−1) where

frep = t rep . . . rep -- n − 1 copies of rep

Fig. 5. A template for making types representable (second approach).

instance (Rep α)⇒ Rep (Tree α) where
rep = tree rep

instance FRep Tree where
frep = tree

The last declaration shows that tree is just the Tree instance of frep. Figure 5
summarizes the per data type work.

3.3 Implementing the shared library code

The implementation of Generic and Rep reflects the change from implicit to explicit
type arguments: the implicit arguments in the form of a context ‘(Rep α) ⇒’ are
replaced by explicit arguments of the form ‘g α→’.

class Generic g where
unit :: g Unit
plus :: g α→ g β → g (Plus α β)
pair :: g α→ g β → g (Pair α β)
datatype :: Iso α β → g α→ g β

char :: g Char
int :: g Int

class Rep α where
rep :: (Generic g)⇒ g α

instance Rep Unit where
rep = unit

instance (Rep α,Rep β)⇒ Rep (Plus α β) where
rep = rep ⊕ rep

instance (Rep α,Rep β)⇒ Rep (Pair α β) where
rep = rep ⊗ rep

Generics for the masses 17

instance Rep Char where
rep = char

instance Rep Int where
rep = int

Furthermore, we introduce a class that accommodates the mother of all ‘type con-
structor representations’.

class FRep ϕ where
frep :: (Generic g)⇒ g α→ g (ϕ α)

The class Rep abstracts over a type of kind ?, FRep abstracts over a type of kind
?→ ?. In general, we need a class Repκ for each kind of interest, see also Exercise 15.

Exercise 10. The first implementation of generics used implicit, the second explicit
type arguments. Does it make sense to combine both?

class Generic g where
unit :: g Unit
plus :: (Rep α,Rep β)⇒ g α→ g β → g (Plus α β)
. . .

Hint: given this interface can you define a truly polymorphic function of type
(FRep ϕ)⇒ ϕ α→ Int?

3.4 Extensions

3.4.1 Accessing constructor names

Passing type representations explicitly pays off when it comes to adding informa-
tion about constructors. In Section 2.4.3 we had to introduce a new type Constr
to record the name and the arity of the constructor, and we had to change the
representation of elements accordingly. Now, we can simply add the information to
the type representation.

class Generic g where
. . .

constr :: Name → Arity → g α→ g α

Since the additional type case constr name arity has type g α → g α, the repre-
sentation of values is not affected. This is a huge advantage as it means that this
extension works both for pretty printing and parsing.

In particular, it suffices to adapt the definition of tree and colleagues; the imple-
mentation of the mappings fromTree and toTree is not affected.

tree :: (Generic g)⇒ g α→ g (Tree α)
tree a = datatype (Iso fromTree toTree)

(constr "Leaf" 1 a ⊕ constr "Fork" 2 (tree a ⊗ tree a))

The new definition of tree is a true transliteration of the data type declaration.

18 R. Hinze

3.4.2 Mutual recursion

Being explicit about type representations is awkward when it comes to program-
ming mutually recursive generic functions. With the first implementation mutual
recursion was easy: the method context ‘(Rep α)⇒’ allowed us to call any generic
function. Now, we are less flexible: the explicit g α argument corresponds to the
immediate recursive call. So, to implement mutual recursion we have to tuple the
functions involved.

newtype Pretty α = Pretty{appPretty :: α→ Doc,

appPrettyList :: [α]→ Doc}
The following exercise asks you to re-implement the prettier printer using this record
type.
Exercise 11. Re-implement the generic prettier printer of Section 2.4.4 using tu-
pling. Try, in particular, to simulate default type cases.

4 Abstracting over multiple type arguments

The next and final generalization, while simple to implement, is not entirely ob-
vious: we allow the signature of a generic function to abstract over multiple type
arguments. This extension is pointless for generic functions on types, but useful
for generic functions on type constructors as it adds an extra degree of flexibility.
Again, we shall re-use the class and method names of the previous sections even
though the types are different.

4.1 Defining a generic function

Many list-processing functions can be made generic so that they work for arbi-
trary data types. An important example is the function map which applies a given
function to every element of a given list:

map :: (α1 → α2)→ ([α1]→ [α2])
map f [] = []
map f (x : xs) = f x : map f xs

As a characteristic feature map does not change the structure of the list; only the
elements of the list are modified. The list data type is the most prominent example
of a container type. It is not hard to see that mapping functions make sense for
arbitrary container types. In general, the mapping function for an n-ary container
type (containing elements of n different types) takes n argument functions and
applies them to the elements of the appropriate types leaving the structure of the
container unchanged:

Int → Int
(α1 → α2)→ (Tree α1 → Tree α2)
(α1 → α2)→ (β1 → β2)→ (Shrub α1 β1 → Shrub α2 β2)

Type constructors with no arguments, ie types, are an extreme case: since the
mapping function takes no arguments, it has type T → T . In fact, the mapping

Generics for the masses 19

function for types boils down to the identity as it is not supposed to change the
structure of the ‘container’. We already know from Section 3.1 that generic functions
sometimes have trivial instances on types: the generic counter, for instance, is the
constant 0 function in this case. Nonetheless the extreme case is important as it
suggests a type signature for the generic mapping function:

newtype Map α = Map{appMap :: α→ α}
If we apply appMap to rep, we obtain a function of type (Rep α) ⇒ α → α as
desired. Applying appMap to frep yields

fmap′ :: (FRep ϕ)⇒ (α→ α)→ (ϕ α→ ϕ α)
fmap′ f = appMap (frep f)

which is almost what we want: fmap′ takes as a first argument a function of type
α → α whereas the original map takes a function of type α1 → α2. Fortunately,
this problem is easy to remedy: we merely have to extend the type signature by a
second type argument:

newtype Map α1 α2 = Map{appMap :: α1 → α2}
The type Map is now isomorphic to the function type constructor ‘→’, so we could
use ‘→’ directly. However, for clarity, we shall stick to the more verbose type. The
generic definition of the mapping function is mostly straightforward.

instance Generic Map where
unit = Map (λx → x)
plus a b = Map (λx → case x of Inl l → Inl (appMap a l)

Inr r → Inr (appMap b r))
pair a b = Map (λx → Pair (appMap a (outl x)) (appMap b (outr x)))
datatype iso1 iso2 a

= Map (λx → toData iso2 (appMap a (fromData iso1 x)))
char = Map (λx → x)
int = Map (λx → x)

The mapping function on types, Unit , Char and Int , is the identity; on binary
types, Plus and Pair , it takes two argument functions and applies them to the
components of the appropriate types. We postpone a discussion of datatype until
the next section.

The specialization of the generic mapping function to unary type constructors is
then given by

fmap′ :: (FRep ϕ)⇒ (α1 → α2)→ (ϕ α1 → ϕ α2)
fmap′ f = appMap (frep (Map f))

The type of fmap′ is as expected because frep now has the more general type
(Generic g)⇒ g α1 α2 → g (ϕ α1) (ϕ α2), see Section 4.3.

Exercise 12. Implement a generic version of the monadic mapping function:

newtype MapM µ α1 α2 = MapM {appMapM :: α1 → µ α2}
instance (Monad µ)⇒ Generic (MapM µ)

20 R. Hinze

4.2 Introducing a new type

Making new types representable works almost exactly as before except that datatype
now takes two iso arguments: given isomorphisms iso1 and iso2 of types Iso α1 β1

and Iso α2 β2 the method dataype iso1 iso2 has type g α1 α2 → g β1 β2. It
allows us to turn a generic function of type g α1 α2 into a function of type g β1 β2

provided α1 and β1 are isomorphic and α2 and β2. This explains the definition of
the mapping function for the datatype case in the previous section: since Map is
essentially ‘→’, we have to turn a function f of type α1 → α2 into a function of
type β1 → β2. The composition toData iso2 · f · fromData iso1 does the job.

As an example, here is the type constructor representation for the data type Tree.

tree :: (Generic g)⇒ g α1 α2 → g (Tree α1) (Tree α2)
tree a = datatype isoTree isoTree (a ⊕ tree a ⊗ tree a)

isoTree :: Iso (Tree ′ α) (Tree α)
isoTree = Iso fromTree toTree

At first sight, it seems that we pass two copies of isoTree to datatype, but a closer
inspection reveals that they are two different instances of the same polymorphic
value.

4.3 Implementing the shared library code

The Generic class must be adapted to abstract over a binary type constructor g .

class Generic g where
unit :: g Unit Unit
plus :: g α1 α2 → g β1 β2 → g (Plus α1 β1) (Plus α2 β2)
pair :: g α1 α2 → g β1 β2 → g (Pair α1 β1) (Pair α2 β2)
datatype :: Iso α1 β1 → Iso α2 β2 → g α1 α2 → g β1 β2

char :: g Char Char
int :: g Int Int

The mother of all generic functions, rep, instantiates g to two copies of the repre-
sentable type:

class Rep α where
rep :: (Generic g)⇒ g α α

Though the class definition has changed, the instance declarations are exactly as
in Section 3.3.

The FRep class is, however, more general than before—this was the purpose of
the whole exercise.

class FRep ϕ where
frep :: (Generic g)⇒ g α1 α2 → g (ϕ α1) (ϕ α2)

The new version of Generic strictly generalizes the development in Section 3 as
every one-argument type signature can be rewritten as a two-argument signature
that simply ignores the second argument. For example,

Generics for the masses 21

newtype Count α1 α2 = Count{genericCount :: α1 → Int }
So, at least in principle, there is no necessity to have both the one-argument and
the two-argument version of Generic.

Exercise 13. Can you think of a generic function that is parameterized by more
than two type arguments?

Exercise 14. How would you implement

apply :: (FRep ϕ)⇒ ϕ (α→ β)→ (ϕ α→ ϕ β)

which applies a structure of functions to a structure of arguments? We require both
structures to have the same shape. Hint: solve the previous exercise first.

Exercise 15. Generalize Rep and FRep to a family Repκ of classes indexed by
the kind κ of its type argument: Rep = Rep? and FRep = Rep?→?. Hint: use a
kind-indexed type (Hinze, 2002).

4.4 Example: generic ordering

Exercise 1 asked for a generic version of Haskell’s comparison function suggesting
the following type signature

newtype Cmp α = Cmp{appCmp :: α→ α→ Ordering }
Intuitively, the two elements whose ordering is determined must be of the same
type. Perhaps surprisingly, we obtain a more flexible variant if we abstract over two
type arguments.

newtype Cmp α1 α2 = Cmp{appCmp :: α1 → α2 → Ordering }
Given this type the implementation of the generic compare is fairly straightforward:

instance Generic Cmp where
unit = Cmp (λx1 x2 → EQ)
plus a b = Cmp (λx1 x2 → case (x1, x2) of

(Inl a1, Inl a2)→ appCmp a a1 a2

(Inl a1, Inr b2)→ LT
(Inr b1, Inl a2)→ GT
(Inr b1, Inr b2)→ appCmp b b1 b2)

pair a b = Cmp (λx1 x2 → case appCmp a (outl x1) (outl x2) of
LT → LT
EQ → appCmp b (outr x1) (outr x2)
GT → GT)

datatype iso1 iso2 a
= Cmp (λx1 x2 → appCmp a (fromData iso1 x1) (fromData iso2 x2))

char = Cmp (λx1 x2 → compare x1 x2)
int = Cmp (λx1 x2 → compare x1 x2)

Applying appCmp to rep yields the function requested in Exercise 1.

22 R. Hinze

cmp :: (Rep α)⇒ α→ α→ Ordering
cmp = appCmp rep

The extra generality shows up if we lift cmp to type constructors:

fcmp :: (FRep ϕ)⇒ (α1 → α2 → Ordering)→ (ϕ α1 → ϕ α2 → Ordering)
fcmp rel = appCmp (frep (Cmp rel))

The call fcmp rel x1 x2 checks whether corresponding elements in the structures x1

and x2 are related by rel . Of course, rel need not be the usual lexicographic ordering;
it may even relate elements of different types. It is worth noting that the above
implementation with the exception of datatype works for both the one-argument
and the two-argument version of Cmp. In a sense, the more general type is also
more natural; the first type artificially constrains the applicability of the code.

5 Background: type representations

We have seen three implementations of generics. So far we have motivated and
explained the different approaches mainly from the perspective of a potential user.
It is high time to look behind the scenes. In this section we shall highlight the
theoretical background deriving the first two implementations from first principles.

A generic function such as showBin can be seen as a function that is parameter-
ized by a type and proceeds by case analysis on the type. Of course, Haskell 98 like
most other languages neither allows the programmer to pass types nor to analyze
them. However, what we can do is to pass and analyze representations of types.

As a first try, we could invent a type Rep and assign showBin the type Rep → α→
Bin. A moment’s reflection, however, reveals that this won’t work. The parametric-
ity theorem (Wadler, 1989) implies that a function of this type must necessarily
ignore its second argument. The trick described in (Cheney & Hinze, 2002) is to
use a parametric type for type representations:3

showBin :: ∀α .Rep α→ α→ Bin

The idea is that an element of Rep τ is the unique representation of τ . Interestingly,
we can define Rep in Haskell using a recent extension called generalized algebraic

data types (Hinze, 2003; Peyton Jones et al., 2004):

data Rep :: ? → ?where
Int :: Rep Int
Pair :: ∀α β .Rep α→ Rep β → Rep (α, β)

The declaration introduces the type constructor Rep and two data constructors Int
and Pair . For brevity, we shall use this stripped-down version of Rep that comprises
only one primitive and one elementary type as a running example. Note that Rep
is not an ordinary parameterized data type since the result types of Int and Pair
are not of the form Rep α.

3 From now on we shall be explicit about universal quantification. In particular, as we shall use
polymorphic functions of higher ranks and local universal quantification.

Generics for the masses 23

Using Rep we can easily implement a generic version of showBin.

showBin :: ∀τ .Rep τ → τ → Bin
showBin (Int) i = bits 16 i
showBin (Pair a b) (x , y) = showBin a x ++ showBin b y

Since a type is represented by a value, the type case boils down to an ordinary case,
which is a good thing because we can use all the conveniences of pattern matching
such as default cases or nested patterns.

It is important to note, however, that the case analysis is unusual in that each
branch has a different type: the first equation instantiates the type of showBin to
Int , the second to (α, β). This is why generalized algebraic data types are a non-
trivial extension of Haskell 98. Since we want to do without any extensions, we have
to encode Rep somehow.

5.1 Background: encodings of data types

Before we proceed let us briefly review representations of data types. The best
known scheme for representing data types in System F (Girard, 1972) was discov-
ered independently by Leivant (1983) and Böhm and Berarducci (1985). In this
scheme the recursive type T ∼= F T is represented by the space of polymorphic
functions ∀τ . (F τ → τ)→ τ . Consider as a simple example the unary representa-
tion of the natural numbers.

data Nat :: ?where
Zero :: Nat
Succ :: Nat → Nat

We have Nat ∼= F Nat where F α = 1 + α. Using the laws of exponentials, in
particular, 1→ C ∼= C and (A + B)→ C ∼= (A→ C)× (B → C), we can slightly
simplify the encoding: F τ → τ = (1 + τ)→ τ ∼= (1→ τ)× (τ → τ) ∼= τ × (τ → τ).
Thus, we obtain the following definition of Nat .

newtype Nat = Nat{fold :: ∀nat .Algebra nat → nat }
data Algebra nat = With{foldZero :: nat ,

foldSucc :: nat → nat }
The helper data type Algebra, which implements F τ → τ , is pretty much a translit-
eration of the original data declaration, except that Nat has been replaced by nat .
Interestingly, an element of Nat can be seen as a fold or catamorphism (Hinze,
2005): it evaluates the natural number it represents using a given algebra. As an
aside, since τ × (τ → τ) → τ ∼= (τ → τ) → (τ → τ), the above definition of Nat
is isomorphic to the type of Church numerals, which is why this scheme is often
called Church encoding.

The constructors Zero and Succ are represented by

zero = Nat (λa → foldZero a)
succ n = Nat (λa → foldSucc a (fold n a))

Read the definitions as folds or catamorphisms: the successor function, for instance,

24 R. Hinze

first evaluates its argument (fold n a) and then applies the appropriate component
of the algebra to the result (foldSucc a). Here is the definition of addition using
this encoding:

(+) :: Nat → Nat → Nat
m + n = fold m With{foldZero = n,

foldSucc = succ}
A second scheme for representing data types is due to Parigot (1992). Here the

recursive type T ∼= F T is represented by the type U = ∀τ . (F U → τ)→ τ , which
is recursive, as well. The Parigot encoding of the natural numbers is very similar
to the Church encoding:

newtype Nat = Nat{case :: ∀nat .Case nat → nat }
data Case nat = Of {caseZero :: nat ,

caseSucc :: Nat → nat } -- NB. Nat → nat instead
-- of nat → nat

Again, note that the helper type Case, which implements F U → τ , is almost
a transliteration of the original data declaration, except that now only the oc-
currences of Nat in the result types of the constructors are replaced by nat . The
major difference to the Church encoding is that an element of Nat now implements
a case-analysis rather than a fold. Consequently, the representations of Zero and
Succ simply select a case branch.

zero = Nat (λc → caseZero c)
succ n = Nat (λc → caseSucc c n)

The definition of addition is more or less a transliteration of the usual recursive
definition.

(+) :: Nat → Nat → Nat
m + n = case m Of {caseZero = n,

caseSucc = λm ′ → succ (m ′ + n)}
An advantage of the Parigot encoding is that the predecessor can be computed in
constant time: pred n = case n Of {caseZero = zero, caseSucc = id }. On the other
hand, it requires System F to be extended by recursive types.

5.2 Parigot encoding of Rep

Now, let us apply the encodings to the type Rep of type representations. It may
come as a surprise that we can actually do this as Rep is a generalized algebraic

data type, one that is not given as the fixed point of some type constructor F . The
point is that F is not needed to make this work: we can directly transliterate the
data declaration of Rep, which defines a higher-order algebra, into an Algebra or
Case record.

Here is the Parigot encoding of Rep (we start with the Parigot encoding as this
one is easier to understand):

Generics for the masses 25

newtype Rep τ = Rep{case :: ∀rep .Case rep → rep τ }
data Case rep = Of {caseInt :: rep Int ,

casePair :: ∀α β .Rep α→ Rep β → rep (α, β)}
int :: Rep Int
int = Rep (λc → caseInt c)

pair :: ∀α β .Rep α→ Rep β → Rep (α, β)
pair a b = Rep (λc → casePair c a b)

Typical of the Parigot encoding, the recursive arguments of the constructors have
type Rep rather than rep. Furthermore, Rep and Case are defined by mutual re-
cursion.

Here is the showBin function adapted to the Parigot encoding.

newtype ShowBin α = ShowBin{appShowBin :: α→ Bin }
showBin ′ :: ∀τ .Rep τ → ShowBin τ

showBin ′ t = case t Of {caseInt = ShowBin (λi → bits 16 i),
casePair = λa b → ShowBin (λ(x , y)→

showBin a x ++ showBin b y)}
showBin :: ∀τ .Rep τ → (τ → Bin)
showBin t = appShowBin (showBin ′ t)

We have successfully eliminated the generalized algebraic data type. However, the
program above is still not legal Haskell 98 since it uses local universal quantification:
Case is a record with a polymorphic component. Worse still, Rep τ is a polymorphic
function that takes a polymorphic record as an argument. On top of this, a generic
function such as showBin takes an argument of type Rep τ .

How can we possibly encode this tower of polymorphic functions in Haskell 98?
The essential clue to solving this puzzle is to recall that Haskell has two different
kinds of records: data types with a single constructor and type classes. A type class
declaration introduces a record type, each instance declaration defines a record of
that type. Though type classes are second-class citizens, they have two distinct
advantages over ordinary records: they are created and passed implicitly and they
may contain polymorphic components.

The first feature is a convenience: an element of Rep τ represents a type, so what
could be more natural to use the class system to automatically create and pass
elements of type Rep τ , in particular, as the creation is dictated by type.

The second feature is essential for the transition to Haskell 98. It is well-known
that the translation of type classes to System F, the so-called dictionary translation,
requires records with polymorphic components. Here we employ this fact to encode
polymorphic records. Since both Rep and Case contain polymorphic functions, we
turn both types into type classes.

26 R. Hinze

class Rep τ where
case :: (Case rep)⇒ rep τ

class Case rep where
caseInt :: rep Int
casePair :: ∀α β . (Rep α,Rep β)⇒ rep (α, β)

Of course, Rep and Case are still mutually recursive. The encodings of Int and
Pair are now given by two instance declarations.

instance Rep Int where
case = caseInt

instance (Rep α,Rep β)⇒ Rep (α, β) where
case = casePair

The method definitions are unusually short (SPJ: “Ralf stopped writing.”) since
all the arguments are now passed implicitly. For completeness, here is the code of
showBin using type classes.

instance Case ShowBin where
caseInt = ShowBin (λi → bits 16 i)
casePair = ShowBin (λ(x , y)→ showBin x ++ showBin y)

showBin :: ∀τ . (Rep τ)⇒ τ → Bin
showBin = appShowBin case

It’s also much shorter than the previous version because again most of the argu-
ments are passed implicitly.

If we compare the code above to the definitions in Section 2, we find that we
have, modulo naming of classes and methods, derived the first implementation of
generics.

5.3 Church encoding of Rep

Here is the Church encoding of Rep:

data Rep τ = Rep{fold :: ∀rep .Algebra rep → rep τ }
data Algebra rep = With{foldInt :: rep Int ,

foldPair :: ∀α β . rep α→ rep β → rep (α, β)}
int :: Rep Int
int = Rep (λc → foldInt c)

pair :: ∀α β .Rep α→ Rep β → Rep (α, β)
pair a b = Rep (λc → foldPair c (fold a c) (fold b c))

As we already know, the difference to the Parigot encoding is subtle: the two types
are no longer mutually recursive, since the arguments of the constructors have type
rep rather than Rep. Furthermore, pair now recursively evaluates its arguments.
Because pair already does most of the hard work, foldPair in the code below only
needs to apply its arguments to the components of the pair: a and b are no longer
type representations, but already appropriate instances of showBin ′.

Generics for the masses 27

showBin ′ :: ∀τ .Rep τ → ShowBin τ

showBin ′ t = fold t With{foldInt = ShowBin (λi → bits 16 i),
foldPair = λa b → ShowBin (λ(x , y)→

appShowBin a x ++ appShowBin b y)}
showBin :: ∀τ .Rep τ → (τ → Bin)
showBin t = appShowBin (showBin ′ t)

Since Algebra is the algebra of types (more accurately, of type representations),
showBin ′ can be seen as a type fold.

As in the previous section, we can use type classes to turn the above code into a
legal Haskell 98 program.

class Rep τ where
fold :: (Algebra rep)⇒ rep τ

class Algebra rep where
foldInt :: rep Int
foldPair :: ∀α β . rep α→ rep β → rep (α, β)

int = foldInt

infixr 3 ⊗
a ⊗ b = foldPair a b

instance Rep Int where
fold = int

instance (Rep α,Rep β)⇒ Rep (α, β) where
fold = fold ⊗ fold

Adapting showBin to the class-based version is largely a matter of routine.

instance Algebra ShowBin where
foldInt = ShowBin (λi → bits 16 i)
foldPair a b = ShowBin (λ(x , y)→ appShowBin a x ++ appShowBin b y)

showBin :: ∀τ . (Rep τ)⇒ τ → Bin
showBin = appShowBin fold

All in all, we have derived the second implementation of generics.
One of the pros of the second variant, discussed in Section 3, is that it allows us

to define generic functions on type constructors. This feature is, in fact, achieved
via a neat trick. The first thing to note is that the generic functions still analyse
types, not type constructors (we could have introduced a generalized algebraic data
type to represent type constructors, but we didn’t). The basic idea is that a type
constructor of kind ? → ? , a function on types, can be represented by an open type,
a type that contains a single free type variable. Assume, for the sake of example,
that we want to encode solely the structure of a container ignoring its elements.
Using informal syntax, this could be implemented as follows (the type constructor
is Λa . int ⊗ a):

showBin (int ⊗ a) where showBin (a) = λx → []

28 R. Hinze

The free type variable a marks the positions of the elements that are ignored; the
action of showBin on the free type variable a is defined in the where clause.

Though the original Rep type only admits closed terms, the class-based variant
is more flexible: the informal syntax above corresponds to the legal Haskell 98
fragment below

appShowBin (int ⊗ a) where a = ShowBin (λx → [])

The reason why this works is that Haskell’s class system silently adds code: the
type of a causes int and ‘⊗’ to be instantiated to ShowBin; consequently both
are passed the dictionary of the ShowBin instance of Algebra. In other words, the
occurrence of int in the expression above is not the polymorphic value but rather a
suitable ShowBin instance. That said, it is clear that we could, in principle, mimic
this behaviour in the record-based variant of the Church encoding, but it would be
quite inconvenient to do so.

6 Stock taking

We have presented three implementations of generics. The first one in Section 2
is slightly easier to use (mutually recursive definitions are straightforward) but
more restricted (generic functions on type constructors are not supported). The
second one in Section 3 is very flexible (supports generic functions on both types
and type constructors) but slightly more inconvenient to use (mutual recursion
requires tupling). The third implementation in Section 4 supersedes the second
by generalizing the signature of generic functions to abstract over multiple type
arguments.

The two main approaches only differ in the way type representations are passed
around: the first implementation, the Parigot encoding, passes them implicitly via
Rep α contexts; the second, the Church encoding, passes them explicitly as ar-
guments of type g α. Being explicit has one further advantage besides greater
expressiveness: we can change the representation of types without changing the
representation of the underlying values. This is very useful for adding information
about data constructors.

The class-based implementation of generics is surprisingly expressive: we can
define all the generic functions presented, for instance, in (Hinze, 2002). It has,
however, also its limitations. Using a single Generic class we can only define func-
tions that abstract over a fixed number of type arguments. In principle, we need one
separate class for each arity. In practice, a single class that abstracts over two argu-
ments might be sufficient: type signatures that abstract over one argument only can
be rewritten as two-argument signatures that ignore the second parameter; generic
functions that need abstraction over three or more parameters are quite rare (but
see Exercises 13 and 14). Using several different Generic classes has the unfortu-
nate consequence that there isn’t a single type representation, which is awkward for
implementing dynamic values. Finally, none of the approaches can define generic
functions that involve generic types (Hinze et al., 2004), types that are defined by
induction on the structure of types.

Generics for the masses 29

The particular implementation described in this paper is inspired by Weirich’s
paper (2003). Weirich gives an implementation in Haskell augmented by rank-2
types. The essence of this paper is that Haskell’s class system can be used to avoid
higher-order ranks.

There is yet another encoding of type representations, described in (Cheney &
Hinze, 2002). The idea is to simulate the original Rep type, which is a generalized
algebraic data type, using equality constraints. To illustrate the idea, the type
signature

Pair :: Rep α→ Rep β → Rep (α, β)

can be rewritten as

Pair :: (τ (α, β))⇒ Rep α→ Rep β → Rep τ

A witness for the equality constraint is then passed to each occurrence of Pair ,
either implicitly or explicitly. The constraint can subsequently be used to convert
an element of τ into a pair, or vice versa.

7 Further reading and related work

Have you got interested in generic programming? There is a wealth of material on
the subject. For a start, we recommend studying the tutorials (Backhouse et al.,
1999; Hinze & Jeuring, 2003b; Hinze & Jeuring, 2003a). Further reading includes
(Jansson & Jeuring, 1997; Hinze, 2000). Let us now take a closer look at related
work.

Generic type classes Haskell’s major innovation was its support for ad-hoc over-
loading in the form of type classes. Type classes bear a strong resemblance to generic
definitions: A type class declaration corresponds to the type signature of a generic
definition—or rather, to a collection of type signatures. An instance declaration
is related to a type case of a generic definition. The crucial difference to generic
programming is that an instance declaration must be written by hand for each
newly defined data type, whereas a generic definition automatically works for all
(representable) types. We have mentioned in the introduction that Haskell provides
special support for a handful of built-in classes: by attaching a deriving clause to a
data declaration, the Haskell compiler is instructed to generate the ‘obvious’ code
for these classes. What ‘obvious’ means is specified informally in an Appendix of
the language definition (Peyton Jones, 2003). Of course, the idea suggests itself
to use generic definitions for specifying default methods so that the programmer
can define her own derivable classes. This extension is detailed in (Hinze & Pey-
ton Jones, 2001) and partially supported by the Glasgow Haskell Compiler (The
GHC Team, 2005). A similar, but more expressive variant of generic type classes

is implemented in Clean (Alimarine & Plasmeijer, 2001). The overall programming
style is very similar (modulo syntax) to what we have seen here. A distinct advan-
tage over our proposal is that the per data type code is generated automatically.
Furthermore, extra type cases are easily handled by providing additional instance

30 R. Hinze

declarations. On the other hand, some extensions do not seem to fit well into the
class framework: for instance, to provide access to the names of constructors, val-
ues must be embedded in types. Since neither Haskell nor GHC’s internal language
support this, access to constructor names is currently not supported. With type

representations this is not an issue: a type representation is a value, which can be
easily augmented by additional data.

PolyP The Haskell extension PolyP (Jansson & Jeuring, 1997) was one of the first
attempts to produce a generic programming language. It is simpler and less powerful
than the approach described here as it is restricted to generic functions that abstract
over regular type constructors of kind ? → ? . The original implementation of
PolyP is set up as a preprocessor that translates PolyP code into Haskell. A later
version (Norell & Jansson, 2003) embeds PolyP program into Haskell augmented
by multiple parameter type classes with functional dependencies (Jones, 2000). A
disadvantage of the latter approach is that many type classes propagate into the
types of generic functions. For instance, the generic counter has type

psum :: (FunctorOf f d ,P fmap2 f ,P fsum f)⇒ d Int → Int

An advantage of PolyP is that it can define various recursion operators such as
cata- or anamorphisms (Meijer et al., 1991). This is not possible here as it requires
a different representation of types. However, Oliveira and Gibbons (2005) show how
to adopt our approach to PolyP resulting in a purely Haskell 98 implementation,
called Light PolyP. In Light PolyP the types of generic functions are much closer
to what one would expect without loosing any expressive power.

Generic Haskell Generic Haskell (Löh, 2004; Löh & Jeuring, 2005) is a full-fledged
implementation of generics based on ideas by Hinze (2002; 2004) that features
generic functions, generic types and various extensions such as default cases and
constructor cases (Clarke & Löh, 2002). Generic Haskell supports the definition of
functions that work for all types of all kinds, such as, for example, a generalized
mapping function. Default cases and constructor cases allow the generic program-
mer to refine the behaviour of a generic functions for some specific data types
(additional type cases) or even for some specific data constructors. Generic Haskell
like PolyP is a preprocessor that translates generic programs into Haskell 98 aug-
mented by rank-n types. It works by program specialization: for every data type,
a generic function is applied to, Generic Haskell generates a tailor-made instance.
Since the type case analysis is performed at compile-time, the resulting code is more
efficient.

Intensional type analysis Closely related to generic programming is the work on
intensional type analysis (Harper & Morrisett, 1995; Crary et al., 1998; Crary &
Weirich, 1999; Trifonov et al., 2000; Weirich, 2001). Intensional type analysis is used
in typed intermediate languages in compilers for polymorphic languages, among
others to be able to optimise code for polymorphic functions. Loosely speaking, in-
tensional type analysis relates to generic programming in the same way the Parigot

Generics for the masses 31

encoding relates to the Church encoding: intensional type analysis centers around
type case, while generic programming deals with type catamorphisms.

Scrap your boilerplate A different approach to generic programming, called ‘scrap
your boilerplate’ henceforth SYB, was developed by Peyton Jones and Lämmel in
a series of papers (2003; 2004; 2005). Originally, the approach was an implementa-
tion of strategic programming (Visser, 2000) in Haskell and was then extended to
cover more generic grounds. Briefly, strategic programming is an idiom for process-
ing and querying complex, compound data such as terms or object structures. The
SYP approach is essentially combinator-based: the user writes generic functions by
combining a few generic primitives. This is one of its strengths (generic traversals
can often be written succinctly and perspicuously), but also its main weakness: the
definition of more complex functions (for instance, a function that traverses several
structures simultaneously) requires a considerable level of sophistication. On a more
principal note, it is not clear, whether the set of predefined combinators is sufficient
to define all generic functions of interest. Indeed, each new paper introduces a few
additional combinators. The approach is restricted to generic functions on types,
generic functions on type constructors such as map or size are out of reach. The im-
plementation relies in an essential way on rank-2 polymorphism and various other
extensions (such as type-safe cast and recursive dictionaries), so that the approach
is not suitable for Haskell 98. Furthermore, it requires additional compiler support
for instantiating the primitives to every data type of interest. With respect to ef-
ficiency, SYB seems to be advantageous, since the generic functions work directly
on the original data, whereas our approach requires a mediating data structure,
the representation type. On the other hand, SYB makes heavy use of higher-order
functions and potentially costly run-time type tests, which may outweigh the sav-
ings. The SYB approach can be simulated to some extent in our framework if one
is willing to go beyond Haskell 98, see (Hinze, 2003). In general, using rank-2 types

we can implement higher-order generic functions.

Acknowledgements

I am grateful to Andres Löh, Jeremy Gibbons, Simon Peyton Jones, Bruno Oliveira,
Fermin Reig, Stephanie Weirich, and the anonymous referees of ICFP 2004 and
of this special issue for pointing out several typos and for valuable suggestions
regarding grammar and, in particular, presentation.

References

Alimarine, A. and Plasmeijer, R. (2001) A generic programming extension for Clean.
Arts, T. and Mohnen, M. (eds), Proceedings of the 13th International workshop on the
Implementation of Functional Languages, IFL’01 pp. 257–278.

Backhouse, R., Jansson, P., Jeuring, J. and Meertens, L. (1999) Generic Programming —
An Introduction —. Swierstra, S. D., Henriques, P. R. and Oliveira, J. N. (eds), 3rd
International Summer School on Advanced Functional Programming, Braga, Portugal.
Lecture Notes in Computer Science 1608, pp. 28–115. Springer-Verlag.

32 R. Hinze

Böhm, C. and Berarducci, A. (1985) Automatic synthesis of typed λ-programs on term
algebras. Theoretical Computer Science 39(2-3):135–154.

Cheney, J. and Hinze, R. (2002) A lightweight implementation of generics and dynamics.
Chakravarty, M. M. (ed), Proceedings of the 2002 ACM SIGPLAN Haskell Workshop
pp. 90–104. ACM Press.

Clarke, D. and Löh, A. (2002) Generic Haskell, specifically. Gibbons, J. and Jeuring,
J. (eds), Proceedings of the IFIP TC2 Working Conference on Generic Programming,
Schloss Dagstuhl pp. 21–48. Kluwer Academic Publishers.

Crary, K. and Weirich, S. (1999) Flexible type analysis. Proceedings ICFP 1999: Interna-
tional Conference on Functional Programming pp. 233–248. ACM Press.

Crary, K., Weirich, S. and Morrisett, J. G. (1998) Intensional polymorphism in type-
erasure semantics. Proceedings ICFP 1998: International Conference on Functional
Programming pp. 301–312. ACM Press.

DrIFT. (2005) DrIFT Home Page. http://repetae.net/john/computer/haskell/DrIFT/.

Girard, J.-Y. (1972) Interprétation foncionnelle et élimination des coupures de
l’arithmétique d’order supérieur. PhD thesis, Université de Paris VII.

Harper, R. and Morrisett, G. (1995) Compiling polymorphism using intensional type
analysis. 22nd Symposium on Principles of Programming Languages, POPL ’95 pp.
130–141.

Hinze, R. (2000) A new approach to generic functional programming. Reps, T. W. (ed),
Proceedings of the 27th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’00), Boston, Massachusetts, January 19-21 pp. 119–
132.

Hinze, R. (2002) Polytypic values possess polykinded types. Science of Computer Pro-
gramming 43:129–159.

Hinze, R. (2003) Fun with phantom types. Gibbons, J. and de Moor, O. (eds), The Fun of
Programming, pp. 245–262. Palgrave Macmillan. ISBN 1-4039-0772-2 hardback, ISBN
0-333-99285-7 paperback.

Hinze, R. (2005) Theoretical Pearl: Church numerals, twice! J. Functional Programming
15(1):1–13.

Hinze, R. and Jeuring, J. (2003a) Generic Haskell: Applications. Backhouse, R. and Gib-
bons, J. (eds), Generic Programming: Advanced Lectures. Lecture Notes in Computer
Science 2793, pp. 57–97. Springer-Verlag.

Hinze, R. and Jeuring, J. (2003b) Generic Haskell: Practice and theory. Backhouse, R.
and Gibbons, J. (eds), Generic Programming: Advanced Lectures. Lecture Notes in
Computer Science 2793, pp. 1–56. Springer-Verlag.

Hinze, R. and Peyton Jones, S. (2001) Derivable type classes. Hutton, G. (ed), Proceed-
ings of the 2000 ACM SIGPLAN Haskell Workshop, vol. 41.1 of Electronic Notes in
Theoretical Computer Science. Elsevier Science. The preliminary proceedings appeared
as a University of Nottingham technical report.

Hinze, R., Jeuring, J. and Löh, A. (2004) Type-indexed data types. Science of Computer
Programming 51:117–151.

Jansson, P. and Jeuring, J. (1997) PolyP—a polytypic programming language exten-
sion. Conference Record 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’97), Paris, France pp. 470–482. ACM Press.

Jones, M. P. (2000) Type classes with functional dependencies. Smolka, G. (ed), Proceed-
ings of the 9th European Symposium on Programming, ESOP 2000, Berlin, Germany.
Lecture Notes in Computer Science 1782, pp. 230–244. Springer-Verlag.

Lämmel, R. and Peyton Jones, S. (2004) Scrap more boilerplate: reflection, zips, and

Generics for the masses 33

generalised casts. Fisher, K. (ed), Proceedings of the 2004 International Conference on
Functional Programming, Snowbird, Utah, September 19–22, 2004 pp. 244–255.

Lämmel, R. and Peyton Jones, S. (2005) Scrap your boilerplate with class: extensible
generic functions. Pierce, B. (ed), Proceedings of the 2005 International Conference on
Functional Programming, Tallinn, Estonia, September 26–28, 2005.

Leivant, D. (1983) Reasoning about functional programs and complexity classes associated
with type disciplines. Proceedings 24th Annual IEEE Symposium on Foundations of
Computer Science, FOCS’83, Tucson, AZ, USA pp. 460–469. IEEE Computer Society
Press.

Löh, A. (2004) Exploring Generic Haskell. PhD thesis, Utrecht University.

Löh, A. and Jeuring, J. (2005) The Generic Haskell user’s guide, Version 1.42 - Coral
release. Tech. rept. UU-CS-2005-004. Universiteit Utrecht.

Meijer, E., Fokkinga, M. and Paterson, R. (1991) Functional programming with bananas,
lenses, envelopes and barbed wire. 5th ACM Conference on Functional Programming
Languages and Computer Architecture, FPCA’91, Cambridge, MA, USA. Lecture Notes
in Computer Science 523, pp. 124–144. Springer-Verlag.

Norell, U. and Jansson, P. (2003) Polytypic programming in Haskell. Trinder, P., Michael-
son, G. and Peña, R. (eds), Implementation of Functional Languages: 15th International
Workshop, IFL 2003, Edinburgh, UK, September 8-11, 2003 pp. 168–184.

Okasaki, C. (1997) Catenable double-ended queues. Proceedings of the 1997 ACM SIG-
PLAN International Conference on Functional Programming pp. 66–74. ACM SIG-
PLAN Notices, 32(8), August 1997.

Oliveira, B. C. and Gibbons, J. (2005) TypeCase: A design pattern for type-indexed func-
tions. Submitted for publication.

Parigot, M. (1992) Recursive programming with proofs. Theoretical Computer Science
94(2):335–356.

Peyton Jones, S. (2003) Haskell 98 Language and Libraries. Cambridge University Press.

Peyton Jones, S. and Lämmel, R. (2003) Scrap your boilerplate: a practical approach
to generic programming. Proceedings of the ACM SIGPLAN Workshop on Types in
Language Design and Implementation (TLDI 2003), New Orleans pp. 26–37.

Peyton Jones, S., Washburn, G. and Weirich, S. (2004) Wobbly types: type inference for
generalised algebraic data types. Submitted for publication.

Sheard, T. and Peyton Jones, S. (2002) Template metaprogramming for Haskell.
Chakravarty, M. M. T. (ed), ACM SIGPLAN Haskell Workshop 02 pp. 1–16. ACM
Press.

The GHC Team. (2005) The Glorious Glasgow Haskell Compilation System User’s Guide,
Version 6.4. Available from http://www.haskell.org/ghc/documentation.html.

Trifonov, V., Saha, B. and Shao, Z. (2000) Fully reflexive intensional type analysis. Pro-
ceedings ICFP 2000: International Conference on Functional Programming pp. 82–93.
ACM Press.

Visser, E. (2000) Language independent traversals for program transformation. Jeuring,
J. (ed), Proceedings of the 2nd Workshop on Generic Programming, Ponte de Lima,
Portugal pp. 86–104. The proceedings appeared as a technical report of Universiteit
Utrecht, UU-CS-2000-19.

Wadler, P. (1989) Theorems for free! The Fourth International Conference on Functional
Programming Languages and Computer Architecture (FPCA’89), London, UK pp. 347–
359. Addison-Wesley Publishing Company.

Wadler, P. (2003) A prettier printer. Gibbons, J. and de Moor, O. (eds), The Fun of

34 R. Hinze

Programming. Cornerstones of Computing, pp. 223–243. Palgrave Macmillan Publishers
Ltd.

Weirich, S. (2001) Encoding intensional type analysis. European Symposium on Program-
ming. LNCS 2028, pp. 92–106. Springer-Verlag.

Weirich, S. (2003) Higher-Order Intensional Type Analysis in Type-Erasure Semantics.
available from
http://www.cis.upenn.edu/~sweirich/papers/erasure/erasure-paper-july03.pdf.

