
JFP 21 (3): 219–234, 2011. c© Cambridge University Press 2011

doi:10.1017/S0956796811000050

219

F U N C T I O N A L P E A R L

Typed quote/antiquote or:
Compile-time parsing

R A L F H I N Z E

Department of Computer Science, University of Oxford, Wolfson Building, Parks Road,

Oxford OX1 3QD, England, UK

(e-mail: ralf.hinze@cs.ox.ac.uk)

1 Introduction

Haskell (Peyton Jones, 2003) is often used as a host language for embedding other

languages. Typically, the abstract syntax of the guest language is defined by a

collection of datatype declarations; parsers and pretty-printers convert between

the concrete syntax and its abstract representation. A quote/antiquote mechanism

permits a tighter integration of the guest language into the host language by allowing

one to use phrases in the guest language’s concrete syntax.

For a simple example, assume that the abstract syntax of the guest language is

given by the following datatype of binary trees.

data Tree = Leaf | Fork Tree Tree

To dispense with the need for parentheses, we choose prefix notation for the concrete

syntax. The following interactive session illustrates the use of quotations.

Main〉 « fork fork leaf leaf leaf »
Fork (Fork Leaf Leaf) Leaf

Main〉 size (« fork fork leaf leaf leaf ») + 1

4

A quotation is delimited by guillemets (« and ») and consists of a phrase in concrete

syntax, in our case, a prefix expression. The concrete syntax is a sequence of terminal

symbols, written in typewriter font. A quotation evaluates to abstract syntax and

can be freely mixed with ordinary Haskell expressions. In our example, a quotation

yields a value of type Tree and may therefore serve as an argument to size, which

computes the size of a tree.

Perhaps surprisingly, our quote mechanism guarantees that the guest-language

phrase is well formed: the malformed quotations « fork » and « leaf leaf » are

both rejected by Haskell’s type-checker. This is a big advantage over the use of

strings, which often serve as an approximation to quotations.

The relationship between host and guest language also suggests a notion of

antiquotation: the ability to splice a host-language expression into the middle of

a guest-language phrase. Continuing the example above, here is a session that

220 R. Hinze

demonstrates the use of antiquotations:

Main〉 « fork � (full 2) leaf »
Fork (Fork (Fork Leaf Leaf) (Fork Leaf Leaf)) Leaf

Main〉 let foo t = « fork � t leaf »
Main〉 foo (« fork leaf fork leaf leaf »)

Fork (Fork Leaf (Fork Leaf Leaf)) Leaf

An antiquotation is written as a back-quote (�) followed by an atomic Haskell

expression, for instance, an identifier or a parenthesised expression. The Haskell

expression typically generates a piece of abstract syntax, for instance, in the first

expression above, a fully balanced binary tree of depth 2.

A quote/antiquote mechanism usually requires an extension of the host language.

The purpose of this pearl is to show that one can program such a mechanism within

Haskell itself. The technique is based on Okasaki’s flattening combinators (Okasaki,

2002, 2003), which we shall review in the next section. To make the idea fly, I

assume that we can use an arbitrary terminal symbol in typewriter font as a

Haskell identifier. If you think that this assumption undermines the argument, then

you should read the pearl as an exercise in compile-time parsing.

2 Background: the other continuation-passing style monad

To illustrate the basic idea consider a very simple example, which implements

concrete syntax for the naturals.

Main〉 (« | | | »,« | | | | | » + 7)

(3, 12)

We have only one terminal symbol, the vertical bar, where a sequence of n bars

represents the number n .

The succession of symbols « | | | » looks like a sequence of terminals

enclosed in guillemets. But, of course, this is an illusion; the sequence is, in fact, a

nested application of functions. If we take “«,” “»,” and “|” as aliases for quote,

endquote, and tick , then « | | | » abbreviates the fully parenthesised expression

(((quote tick) tick) tick) endquote. In what follows, we shall use “«” and quote, “»”

and endquote, “�” and antiquote interchangeably.

Now, if Haskell used postfix function application, then we could simply define

quote = 0, tick = succ, endquote = id and we would be done. For Haskell’s prefix

function application, we must additionally arrange that functions and arguments

are swapped:

quote f = f 0

tick n f = f (succ n)

endquote n = n

The stepwise evaluation of « | | | » shows that tick increments the counter,

initialised to 0 by quote, and then passes control to the next function, which is either

Functional pearl 221

another tick or endquote.

quote tick tick tick endquote

= tick 0 tick tick endquote

= tick 1 tick endquote

= tick 2 endquote

= endquote 3

= 3

The evaluation is solely driven by the terminal symbols, which is why we call

them active terminals. This technique of passing control to a function argument

is reminiscent of continuation-passing style (CPS). And indeed, if we call the CPS

Monad to mind1

type CPS α = ∀ans . (α→ ans)→ ans

instance Monad CPS where

return a = λκ→ κ a

m >>= k = λκ→ m (λa → k a κ)

we can identify quote as return 0 and tick as lift succ where lift turns a pure function

into a monadic one:

type α � β = α→ CPS β

lift :: (α→ β)→ (α � β)

lift f a = return (f a)

However, the bind of the monad, “>>=,” seems unrelated: in the CPS monad the

continuation represents the “rest of the computation” whereas in our example the

continuation only stands for the next parsing step.

It may come as a surprise that the instance declaration above is not the only

possibility for turning CPS into a monad. Here is a second instance introducing the

monad of partial continuations.

instance Monad CPS where

return a = λκ→ κ a

m >>= k = m k

The definition of return is unchanged; “>>=” is now a type-restricted instance

of function application. Actually, it is a combination of type application—the

universally quantified variable ans in the type of m is instantiated to CPS β—

and function application, but this is not visible in Haskell. Since “>>=” is postfix

application of “effectful” functions, this CPS monad implements postfix function

application! Consequently, the quotation « | | | » can be seen as a monadic

computation in disguise:

(((quote tick) tick) tick) endquote = run (quote >>= tick >>= tick >>= tick)

1 The instance declaration, which is not legal Haskell, serves only illustrative purposes. We shall only
need return and only at this particular type.

222 R. Hinze

where run encapsulates a CPS computation:

run :: CPS α→ α

run m = m id

Generalising from the example, quotations are based on the identity

quote act1 . . . actn endquote = run (quote >>= act1 >>= · · ·>>= actn)

where quote :: CPS τ1, act i :: τi � τi+1, and endquote = id . It is useful to think of

the τi as state types and the act i as transitions: quote initialises the state; each active

terminal act i transforms the state. In our example, we had a single state type but

this need not be the case in general. In fact, choosing precise state types is the key

to “typed quotes/antiquotes.”

Just in case you were wondering, none of the two CPS monads is a very exciting

one in terms of expressiveness: they are both isomorphic to the identity monad with

return and run converting between them. In other words, CPS offers no effects.

Without loss of generality, we may therefore assume that quote and act i are liftings:

quote = return a and act i = lift fi for some a and suitable fi. The following

calculation summarises our findings:

quote act1 . . . actn endquote

= { definition of ‘>>=’ and run , and endquote = id }
run (quote >>= act1 >>= · · ·>>= actn)

= { CPS is a pure monad: quote = return a and act i = lift fi }
run (return a >>= lift f1 >>= · · ·>>= lift fn)

= { monad laws }
run (return (fn (· · · (f1 a) · · ·)))

= { run · return = id }
fn (· · · (f1 a) · · ·)

In the toy example and in the formal development above, endquote was always

the identity. This is, however, not quite adequate, as the desired value of a quotation

is not necessarily identical to the last state. Fortunately, endquote can be any

function since we can fuse a post-processing step with the final continuation:

post (run m) = m post . This is an immediate consequence of the free theorem for

the type CPS α (Wadler, 1989).

To summarise, a quotation of type τ is of the form

quote act1 . . . actn endquote

where quote :: CPS τ1, act i :: τi � τi+1 and endquote :: τn+1 → τ.

Since the evaluation of a quotation is driven by the terminal symbols, the

implementation of a quote/antiquote mechanism for a particular guest language

goes hand in hand with the development of a parser for the concrete syntax. The

Functional pearl 223

following sections are ordered by the underlying parser’s level of sophistication:

Section 3 shows how to implement simple postfix and prefix parsers, Section 4 deals

with predictive top-down parsers, and finally, Section 5 introduces quotations that

are based on bottom-up parsers.

3 Parsing datatypes

Continuing the example from the introduction, we show how to parse elements of

datatypes in postfix and in prefix notation. Section 3.1 is an excerpt of Okasaki’s

extensive treatment of postfix languages (see Okasaki, 2002).

3.1 Postfix notation

In postfix notation, also known as reverse Polish notation, functions follow their

arguments. Postfix notation dispenses with the need for parentheses, if the arity of

functions is statically known. This is generally not the case in higher order typed

languages, but it is true of data constructors (ignoring the fact that they are curried

in Haskell).

Evaluation of postfix expressions is naturally stack-based: a function pops its

arguments from the stack and pushes the result back onto it. To parse datatypes in

postfix notation, we introduce for each data constructor C :: τ1 → · · · → τn → τ a

postfix constructor:

c :: (((st , τ1), . . .), τn)→ (st , τ)

c (((st , t1), . . .), tn) = (st ,C t1 . . . tn)

The stack, represented by a nested pair, grows from left to right. The modification of

the stack is precisely captured in the type: c is only applicable if the stack contains

at least n arguments and the topmost n have the correct types. For the Tree type,

this specialises to

leaf :: st → (st ,Tree)

leaf st = (st ,Leaf)

fork :: ((st ,Tree),Tree)→ (st ,Tree)

fork ((st , l), r) = (st ,Fork l r)

Given these prerequisites, we can instantiate the framework of Section 2.

quote :: CPS ()

quote = return ()

leaf :: st � (st ,Tree)

leaf = lift leaf

fork :: ((st ,Tree),Tree) � (st ,Tree)

fork = lift fork

endquote :: ((),Tree)→ Tree

endquote ((), t) = t

224 R. Hinze

The function quote initialises the state to the empty stack; endquote extracts the

quoted tree from a singleton stack.

It is instructive to step through the static and dynamic elaboration of a quotation.

Type checking statically guarantees that a quotation constitutes a well-formed postfix

expression.

quote :: CPS ()

quote leaf :: CPS ((),Tree)

quote leaf leaf :: CPS (((),Tree),Tree)

quote leaf leaf fork :: CPS ((),Tree)

quote leaf leaf fork leaf :: CPS (((),Tree),Tree)

quote leaf leaf fork leaf fork :: CPS ((),Tree)

quote leaf leaf fork leaf fork endquote :: Tree

In each step, the state type precisely mirrors the stack layout. Consequently, pushing

too few or too many or the wrong types of arguments results in a static type-error.

The dynamic evaluation shows how the state evolves.

quote leaf leaf fork leaf fork endquote

= leaf () leaf fork leaf fork endquote

= leaf ((),Leaf) fork leaf fork endquote

= fork (((),Leaf),Leaf) leaf fork endquote

= leaf ((),Fork Leaf Leaf) fork endquote

= fork (((),Fork Leaf Leaf),Leaf) endquote

= endquote ((),Fork (Fork Leaf Leaf) Leaf)

= Fork (Fork Leaf Leaf) Leaf

The state is always passed as the first argument. This is something to bear in mind

when implementing additional functionality, such as an antiquote mechanism.

antiquote :: st → Tree � (st ,Tree)

antiquote st t = return (st , t)

The tree is spliced into the current position simply by pushing it onto the stack.

3.2 Prefix notation

Postfix notation was easy; its dual, prefix notation, is slightly harder. Prefix notation

was invented in 1920 by Jan �Lukasiewicz, a Polish logician, mathematician, and

philosopher. Because of its origin, prefix notation is also known as Polish notation.

In postfix notation, a function follows its arguments; so a stack of arguments is

a natural choice for the state. In prefix notation, a function precedes its arguments.

Consequently, the state becomes a stack of pending arguments. For each data

constructor C :: τ1 → · · · → τn → τ, we introduce a prefix constructor:

c◦ :: ((τ, st)→ α)→ ((τ1, (. . . , (τn, st)))→ α)

c◦ ctx = λ(t1, (. . . , (tn, st)))→ ctx (C t1 . . . tn, st)

Functional pearl 225

The stack, again represented by a nested pair, now grows from right to left. The

first argument of c◦ can be seen as a request for a value of type τ (a request is

also known as a context or as an expression with a hole). The prefix constructor

can satisfy this request but, in turn, generates requests for its arguments.2 For the

Tree type, we obtain

leaf ◦ :: ((Tree, st)→ α)→ (st → α)

leaf ◦ ctx = λst → ctx (Leaf , st)

fork ◦ :: ((Tree, st)→ α)→ ((Tree, (Tree, st))→ α)

fork ◦ ctx = λ(t , (u , st))→ ctx (Fork t u , st)

The implementation of quotations and antiquotations is again a straightforward

application of the general framework:

quote :: CPS ((Tree, ())→ Tree)

quote = return (λ(t , ())→ t)

leaf :: ((Tree, st)→ α) � (st → α)

leaf = lift leaf ◦

fork :: ((Tree, st)→ α) � ((Tree, (Tree, st))→ α)

fork = lift fork ◦

endquote :: (()→ Tree)→ Tree

endquote ctx = ctx ()

antiquote :: ((Tree, st)→ α)→ Tree � (st → α)

antiquote ctx t = return (λst → ctx (t , st))

The stack is initialised to one pending argument; we are done if there are no pending

arguments left. Let us again step through an example.

quote :: CPS (((Tree, ())→ Tree)

quote fork :: CPS ((Tree, (Tree, ()))→ Tree)

quote fork fork :: CPS ((Tree, (Tree, (Tree, ())))→ Tree)

quote fork fork leaf :: CPS ((Tree, (Tree, ()))→ Tree)

quote fork fork leaf leaf :: CPS (((Tree, ())→ Tree)

quote fork fork leaf leaf leaf :: CPS (()→ Tree)

quote fork fork leaf leaf leaf endquote :: CPS Tree

The types show how the stack of pending arguments grows and shrinks. For instance,

when the first two forks have been processed, three further subtrees are required:

the left and the right subtree of the second fork and the right subtree of the first

fork. The stepwise evaluation makes this explicit:

2 The type variable α that appears in the type signature of c◦ corresponds to the type of the entire
quotation and can be safely instantiated to Tree. The polymorphic type is only vital if c◦ is used in
quotations of different types.

226 R. Hinze

quote fork fork leaf leaf leaf endquote

= fork (λ(t , ())→ t) fork leaf leaf leaf endquote

= fork (λ(t , (u , ()))→ Fork t u) leaf leaf leaf endquote

= leaf (λ(t ′, (u ′, (u , ())))→ Fork (Fork t ′ u ′) u) leaf leaf endquote

= leaf (λ(u ′, (u , ()))→ Fork (Fork Leaf u ′) u) leaf endquote

= leaf (λ(u , ())→ Fork (Fork Leaf Leaf) u) endquote

= endquote (λ()→ Fork (Fork Leaf Leaf) Leaf)

= Fork (Fork Leaf Leaf) Leaf

Again, if we pass too few or too many or the wrong types of arguments, then we

get a static type-error.

Remark 1

The deeply nested pairs can be avoided if we curry the prefix constructors:

c◦ :: (τ→ α)→ (τ1 → · · · → τn → α)

c◦ ctx = λt1 → · · · → λtn → ctx (C t1 . . . tn)

Additionally, we have generalised the result type of requests from st → α to α. The

adaptation of the remaining code is left as an exercise to the reader. �

4 Top-down parsing

The main reason for treating prefix parsers is that they pave the way for the more

expressive class of LL(1) parsers. The basic setup remains unchanged; we need only

one additional programming technique. To keep the learning curve smooth, however,

we shall go through one intermediate step and treat grammars in Greibach normal

form (GNF) first.

4.1 Greibach normal form

A context-free grammar is in GNF iff all productions are of the form A→ aω, where

a is a terminal symbol and ω is a possibly empty sequence of nonterminal symbols.

A grammar in GNF is (syntactically) unambiguous iff each pair of productions

A1 → aω1 and A2 → aω2 satisfies A1 = A2 =⇒ ω1 = ω2. Unambiguous grammars in

GNF generalise datatype declarations, as a terminal (data constructor) may appear

in different productions (datatype declarations).

Here is an example grammar for a simple imperative language and an equivalent

grammar in GNF.

S → id := E

| if E S S

| while E S

| begin B end

E → id

B → S | S ; B

=⇒

S → id C E

| if E S S

| while E S

| begin S R

C → :=

E → id

R → end | ; S R

Functional pearl 227

Remark 2

If we add the production S → if E S , then the grammar becomes ambiguous, an

instance of the (in-) famous dangling-else problem. �

The abstract syntax of the imperative language is given by

type Var = String

data Stat = Set Var Var | If Var Stat Stat |While Var Stat | Begin [Stat]

As an example, the quotation

« begin

x := y ;

if x

y := z

z := y

end »

evaluates to Begin [Set "x" "y", If "x" (Set "y" "z") (Set "z" "y")]. The definition

of the variables x , y , and z poses a minor problem, which we shall discuss later.

A parser for a grammar in GNF is very similar to a prefix parser: the state is a

stack of pending nonterminal symbols. An active terminal selects a production by

looking at the topmost symbol on the stack. If the grammar is unambiguous, then

there is at most one suitable production. The nonterminal is then replaced by the

right-hand side of the production (omitting the leading terminal).

As before, we want to guarantee statically that a quotation is well formed, so that

its parse does not fail. To this end, we represent nonterminals by types:

newtype S α = S (Stat → α)

newtype C α = C (α)

newtype E α = E (Var → α)

newtype R α = R ([Stat]→ α)

The declarations also list the types of the semantic values that are attached to the

nonterminals. Using these type-level nonterminals, we can program the type-checker

to parse quotations: each production A→ aB1 . . . Bn is mapped to a function a , the

active terminal, of type A α � B1 (· · · (Bn α) · · ·), that implements the expansion

of A. There is one hitch, however: the terminal a may appear in different productions,

so it cannot possibly translate to a single function. Rather, an active terminal stands

for a family of functions, represented in Haskell by a multiple-parameter type-class.

We introduce one class for each terminal symbol that appears more than once. In

our case, the only such terminal is id, so we need just one class.

class Id lhs rhs | lhs → rhs where

id :: String → (lhs � rhs)

The functional dependency lhs → rhs avoids ambiguities during type-inference

making use of the fact that the underlying grammar in GNF is unambiguous.

Each production is translated into an equation.

228 R. Hinze

instance Id (S α) (C (E α)) where

id l = lift (λ(S ctx) → C (E (λr → ctx (Set l r))))

if = lift (λ(S ctx) → E (λc → S (λt → S (λe → ctx (If c t e)))))

while = lift (λ(S ctx) → E (λc → S (λs → ctx (While c s))))

begin = lift (λ(S ctx) → S (λs → R (λr → ctx (Begin (s : r)))))

:= = lift (λ(C ctx)→ ctx)

instance Id (E α) α where

id i = lift (λ(E ctx) → ctx i)

end = lift (λ(R ctx) → ctx [])

; = lift (λ(R ctx) → S (λs → R (λr → ctx (s : r))))

quote = return (S (λs → s))

endquote s = s

The quote function pushes the start symbol on the stack; endquote simply returns

the final value of type Stat .

The terminal symbol id is a bit unusual in that it takes an additional argument,

the string representation of the identifier. This has the unfortunate consequence that

identifiers must be enclosed in parentheses as in « (id "x") := (id "y") ». We can

mitigate the unwelcome effect by introducing shortcuts

x , y :: (Id lhs rhs)⇒ lhs � rhs

x = id "x"

y = id "y"

so that the quotation becomes « x := y ». Alternatively, we may swap the two

arguments of id. In this case, the parentheses can, in fact, must be dropped, so that

the quotation is written « id "x" := id "y" ».

It is instructive to walk through a derivation.

« while x y := z »
= while (S (λs → s)) x y := z »
= x (E (λc → S (λs →While c s))) y := z »
= y (S (λs →While "x" s)) := z »
= := (C (E (λr →While "x" (Set "y" r)))) z »
= z (E (λr →While "x" (Set "y" r))) »
= » (While "x" (Set "y" "z"))

= While "x" (Set "y" "z")

To summarise, for each nonterminal symbol A, we define a type: newtype A α =

A (Val → α), where Val is the type of the semantic values attached to A. For each

terminal symbol a , we introduce a class: class a lhs rhs | lhs → rhs where a :: lhs �

rhs . Finally, each production A→ aB1 . . . Bn gives rise to an instance declaration:

instance a (A α) (B1 (· · · (Bn α) · · ·)) where

a = lift (λ(A ctx)→ B1 (λv1 → · · · → Bn (λvn → ctx (f v1 . . . vn))))

where f is the semantic action associated with the production. Of course, if a

terminal appears only once, then there is no need for overloading.

Functional pearl 229

Fig. 1. The LL(1) parser for the expression grammar, part 1.

4.2 LL(1) parsing

We are well prepared by now to tackle the first major challenge: implementing

quotations whose syntax is given by an LL(1) grammar. As before, we shall work

through a manageable example. This time, we implement arithmetic expressions

given by the grammar on the left below (see Aho et al. 2006, p. 193).

E → E + T | T
T → T * F | F
F → (E) | id

=⇒

E → T E ′

E ′ → + T E ′ | ε
T → F T ′

T ′ → * F T ′ | ε
F → (E) | id

The expression grammar is not LL(1) due to the left recursion; eliminating the left

recursion yields the equivalent LL(1) grammar on the right.

The abstract syntax of arithmetic expressions is given by

data Expr = Id String | Add Expr Expr | Mul Expr Expr

The semantic actions that construct values of type Expr are straightforward to

define for the original expression grammar. They are slightly more involved for the

LL(1) grammar: E ′ and T ′ yield expressions with a hole, where the hole stands for

the missing left argument of the operator (see Figures 1 and 2).

The main ingredient of a predictive top-down parser is the parsing table. Here is the

table for the LL(1) grammar above (see Aho et al. 2006, p. 225).

id + * () »
E E → T E ′ E → T E ′

E ′ E ′ → + T E ′ E ′ → ε E ′ → ε

T T → F T ′ T → F T ′

T ′ T ′ → ε T ′ → * F T ′ T ′ → ε T ′ → ε

F F → id F → (E)

230 R. Hinze

Fig. 2. The LL(1) parser for the expression grammar, part 2.

The table also includes a column for “»,” which serves as an end marker.

The state is now a stack of pending symbols, both terminal and nonterminal. The

symbol X on top of the stack determines the action of the current active terminal a .

If X = a , then the terminal pops X from the stack and passes control to the next

active terminal (pop action). If X is a nonterminal, then the terminal looks up the

production indexed by X and a in the parsing table, replaces X by the right-hand

side of the production, and remains active (expand action). Again, we need not

consider error conditions as the type-checker will statically guarantee that parsing

does not fail.

Functional pearl 231

Since the state is a stack of symbols, we must introduce types both for terminal

and nonterminal symbols (we only show some representative examples here, the

complete code is listed in Figures 1 and 2):

newtype E α = E (Expr → α) -- E

newtype I α = I (Expr → α) -- id

Like nonterminals, terminal symbols may carry semantic information: the terminal

id s , for instance, returns the semantic value Id s of type Expr . For each terminal

symbol including “»,” we introduce a class and an instance that implements the pop

action:

class Add old new | old → new where

+ :: old � new

instance Add (A α) α where

+ (A ctx) = return ctx

Finally, each entry of the parsing table gives rise to an instance declaration that

implements the expand action. Here are the instances for “+”:

instance Add (E ′ α) (T (E ′ α)) where

+ (E ′ ctx) = + (A (T (λt → E ′ (λe′ → ctx (λl → e′ (Add l t))))))

instance (Add α α′)⇒ Add (T ′ α) α′ where

+ (T ′ ctx) = + (ctx (λe → e))

Since the look-ahead token is unchanged, the second instance requires an additional

context, Add α α′, which accounts for the “recursive” call to “+.” The first instance

also contains a call to “+” but this occurrence can be statically resolved: it refers

to the “pop instance.” In general, an instance for the production A→ ω requires a

context iff ε ∈ L(ω), as in this case the stack shrinks.3 The instance head always

reflects the parsing state after the final pop action. Consider the id instance

instance Id (E α) (T ′ (E ′ α)) where

id s (E ctx) = id s (T (λt → E ′ (λe′ → ctx (e′ t))))

The expansion phase proceeds E → T E ′ → F T ′ E ′ → id T ′ E ′. Consequently, the

instance head records that the state changes from E to T ′ E ′.

It remains to implement quote and antiquote.

quote = return (E (λe → e))

antiquote :: E st → Expr � st

antiquote (E st) e = return (st e)

The type of antiquote dictates that we can only splice an expression into a position

where the nonterminal E is expected. This can be achieved by enclosing the

antiquotation in “(” and “).”

3 The standard construction of parsing tables using First and Follow sets already provides the necessary
information: the parsing table contains the production A→ ω for look-ahead a if either a ∈ First(ω),
or ε ∈ L(ω) and a ∈ Follow (A). Only in the second case is a context required.

232 R. Hinze

Main〉 « x + (� (foldr1 Add [Id (show i) | i ← [1 . . 3]])) + y »
Add (Add (Id "x") (Add (Id "1") (Add (Id "2") (Id "3")))) (Id "y")

Remark 3

We have implemented the parsing actions in a rather ad-hoc way. Alternatively, they

can be written using lift and monadic composition:

instance Id (E α) (T ′ (E ′ α)) where

id s = id s ◦ lift (λ(E ctx)→ T (λt → E ′ (λe′ → ctx (e′ t))))

(◦) :: (b → CPS c)→ (a → CPS b)→ (a → CPS c)

q ◦ p = λa → p a >>= q

The rewrite nicely separates the expansion step from the “recursive call.” �

5 Bottom-up parsing: LR(0) parsing

Let us move on to our final challenge: quotations whose concrete syntax is based on

an LR(0) grammar–LR(1) grammars are also doable but we resist the temptation

to spell out the details. Unlike LL parsing, the LR method is generally not suitable

for constructing parsers by hand. For that reason, we shall base the treatment on a

very simple example, the language of balanced parentheses.

P → ε | P (P)

The abstract syntax is given by the Tree datatype: P → ε constructs a Leaf ,

P → P (P) a Fork .

An LR parser is similar to a postfix parser in that the state is a stack of symbols

the parser has already seen. In contrast, the state of an LL parser is a stack of

symbols it expects to see.

For efficiency reasons, an LR parser maintains additional information that

summarises the stack configuration in each step. This is accomplished by a finite-state

machine, the so-called LR(0) automaton. Here is the automaton for the grammar

above (S is a new start symbol, “»” serves as an end marker).

The automaton has six states; the production(s) contained in the states illustrate

the progress of the parse with the dots marking the borderline between what we

have seen and what we expect to see. If the dot appears before a terminal symbol,

Functional pearl 233

we have a shift state (colored in yellow/light gray). If the dot has reached the end

in one of the productions, we have a reduce state (colored in blue/dark gray). In a

shift state, the parser consumes an input token and pushes in onto the stack. In a

reduce state, the right-hand side of a production resides on top of the stack, which

is then replaced by the left-hand side.

In our example, the parser first reduces P → ε moving from the start state 1 to

state 2. Then, it shifts either ‘‘»” or “(.” Each transition is recorded on the stack.

This information is used during a reduction to determine the next state. Consider

state 6; two sequences of moves end in this state: 1
P→ 2

(→ 5
P→ 4

)→ 6 and

5
P→ 4

(→ 5
P→ 4

)→ 6. Removing P(P) from the stack means returning to either

state 1 or state 5. Pushing P onto the stack, we move forward to either state 2

or state 4. In short, reducing P → P(P) is accomplished by replacing the above

transitions by either 1
P→ 2 or 5

P→ 4. The point is that, in general, there are several

transitions for a single production.

Turning to the implementation, the parser’s state is a stack of LR(0) states. Each

LR(0) state carries the semantic value of the unique symbol that annotates the

ingoing edges.

data S1 = S1 -- S

data S2 st = S2 Tree st -- P

data S3 st = S3 st -- »
data S4 st = S4 Tree st -- P

data S5 st = S5 st -- (

data S6 st = S6 st --)

Each state of the automaton is translated into a function that performs the

corresponding action. A shift state simply delegates the control to the next active

terminal. A reduce state pops the transitions corresponding to the right-hand side

from the stack and pushes a transition corresponding to the left-hand side. If there

are several possible transitions, then a reduce action is given by a family of functions

represented as a type class.

quote = state1 S1 -- start

state1 st = state2 (S2 Leaf st) -- reduce

state2 st = return st -- shift

state3 (S3 (S2 t S1)) = t -- accept

state4 st = return st -- shift

state5 st = state4 (S4 Leaf st) -- reduce

class State6 old new | old → new where

state6 :: old � new

instance State6 (S6 (S4 (S5 (S2 S1)))) (S2 S1) where -- reduce

state6 (S6 (S4 u (S5 (S2 t S1)))) = state2 (S2 (Fork t u) S1)

instance State6 (S6 (S4 (S5 (S4 (S5 st))))) (S4 (S5 st)) where -- reduce

state6 (S6 (S4 u (S5 (S4 t (S5 st))))) = state4 (S4 (Fork t u) (S5 st))

234 R. Hinze

The pattern S6 (S4 u (S5 (S4 t (S5 st)))) nicely shows the interleaving of states and

semantic values. Since the stack is nested to the right, u is the topmost semantic

value and consequently becomes the right subtree in Fork t u .

The active terminals implement the shift actions.

class Open old new | old → new where

(:: old � new

instance Open (S2 st) (S4 (S5 (S2 st))) where

(st@(S2) = state5 (S5 st)

instance Open (S4 st) (S4 (S5 (S4 st))) where

(st@(S4) = state5 (S5 st)

) st@(S4) = state6 (S6 st)

endquote st@(S2) = state3 (S3 st)

We need a class if a terminal annotates more than one edge. Again, the instance

types are not entirely straightforward as they reflect the stack modifications up to

the next shift: for instance, “(” moves from S2 to S5 and then to S4, which is again

a shift state.

The implementation technique also works for LR(1) grammars. In this case, the

active terminals implement both shift and reduce actions.

6 Conclusion

Quotations provide a new, amusing perspective on parsing: terminal symbols turn

active and become the driving force of the parsing process. It is quite remarkable

that all major syntax analysis techniques can be adapted to this technique.

Typed quotations provide static guarantees: using type-level representations of

symbols Haskell’s type-checker is instrumented to scrutinise whether a quotation is

syntactically correct. Of course, this means that syntax errors become type errors,

which are possibly difficult to decipher. Adding proper error handling is left as the

obligatory “instructive exercise to the reader.”

References

Aho, A. V., Lam, M. S., Sethi, R. & Ullman, J. D. (2006) Compilers: Principles, Techniques,

and Tools. 2nd ed. Addison-Wesley.

Okasaki, C. (2002) Techniques for embedding postfix languages in Haskell. In Proceedings of

the 2002 ACM SIGPLAN Haskell Workshop, Chakravarty, M. (ed), ACM, pp. 105–113.

Okasaki, C. (2003) Theoretical Pearls: Flattening combinators: Surviving without parentheses.

J. Funct. Program., 13(4), 815–822.

Peyton Jones, S. (2003) Haskell 98 Language and Libraries. Cambridge University Press.

Wadler, P. (1989) Theorems for free! In the Fourth International Conference on Functional

Programming Languages and Computer Architecture (FPCA’89). London, UK: Addison-

Wesley, pp. 347–359.

