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1.1 INTRODUCTION

Coq is a proof assistant featuring a tactic-based interactive theorem prover. The
latest incarnation comes with over 150 tactics that assist the user in developing
a formal proof. These tactics range from the simple and mundane to the ‘all-
powerful’. Some examples from the latter category are the omega tactic that
solves a goal in Presburger arithmetic and the ring and field tactics that solve
identities modulo associativity and commutativity in ring and field structures.

This paper presents a new proof tactic that decides equalities and inequalities
between terms over lattices. It uses a decision procedure that is a variation on
Whitman’s algorithm and is implemented using a technique known as proof by
reflection. We will paint the essence of the approach in broad strokes and discuss
the use of certified functional programs to aid the automation of formal reasoning.

This paper makes three contributions. Firstly it serves an an introduction to
using proof by reflection approach Coq. This utilizes the Ltac language and two
recent extensions to the Coq system: type classes and the PROGRAM extension.
Secondly it gives a certified implementation of Whitman’s algorithm in Coq, with
proofs of correctness and termination. Thirdly, the final product of this work is
a useable proof tactic that can be applied to proof goals involving equalities and
inequalities in lattice theory.

The rest of the paper is organized as follows: Section 2 will give a short in-
troduction to Coq, highlighting the concept of a proof term, and will refresh the
necessary details of lattice theory. We will give a motivation for the problem in
Section 3, and a Coq-based introduction to free lattices along with the decision
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2 CHAPTER 1. LATTICE PROOF TACTIC

procedure in Section 4. Section 5 will describe the technique of proof by reflec-
tion and Section 6 will discuss related and future work. A familiarity with typed
functional programming is recommended.

1.2 BACKGROUND

1.2.1 Coq

Coq is based on the Calculus of Inductive Constructions (CIC), a type theory
which in turn is an extension of the Calculus of Constructions (COC) with
(co-)inductive types. Barendregt’s λ -cube details the richness of this polymor-
phic, dependent type system [1]. As a type-theory based proof assistant it follows
the propositions-as-types, proofs-as-programs interpretation attributed to Curry
and Howard, which brings the user into a realm where the lines between pro-
gramming and proving become blurred. The underlying typed λ -calculus allows
the definition of functions as in any other functional programming language yet,
when viewed as a constructive higher-order logic, the same language can be used
to write specifications and construct proofs.

Constructing a proof for a given formula is of course undecidable in general.
One of the faces of Coq is as a tactic-based interactive theorem prover. A the-
orem is proven in Coq by the interactive application of tactics on a proof goal.
The product of this interactive session is a proof term that is alleged to prove the
given formula. Due to the Curry-Howard isomorphism, this is the same as saying
that the term is alleged to inhabit the type specified. Thus, when in the role of
‘proof checker’, Coq is simply type-checking the proof term, a procedure that is
decidable.

The idea of producing a proof term is an important one. It enables Coq to sat-
isfy what is known as the de Bruijn criterion [2], where the trust in the reliability
of the system must extend only to a small kernel and not to the system as a whole.
For us to trust a proof we can ignore whether every tactic used to construct the
proof is bug free, we only need to trust Coq’s kernel type checker. One could even
see a proof term as a certificate that can be externally verified.

1.2.2 Lattices

A lattice is a set A equipped with two binary operators, meet u and join t, where
the following identities hold for all elements a,b,c of A,

atb = bta at (bt c) = (atb)t c at (aub) = a ata = a

aub = bua au (bu c) = (aub)u c au (atb) = a aua = a

namely the commutative, associative, absorptive and idempotent laws. The sec-
ond row is simply the dual of the first row. This presentation defines a lattice as
an algebraic structure, (A,u,t).

There is more than one design route we can take to encode this mathematical
definition into the Coq system. We have chosen to use a new feature of Coq called
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type classes [15]. Type classes in Coq are a lot like type classes in Haskell. The
Monad type class is well known in Haskell. It consists of the monadic operators
return and bind, but the monad laws are provided only as part of the documenta-
tion, in the hope that programmers abide by them. Coq allows us to do better than
that! For lattices we wish to declare the operators meet and join, but we can also
specify the laws that they must satisfy.

Class Lattice (A : Set) := {
meet : A→ A→ A;
join : A→ A→ A;

meet commutative : ∀ a b, meet a b = meet b a;
meet associative : ∀ a b c, meet (meet a b) c = meet a (meet b c);
meet absorptive : ∀ a b, meet a (join a b) = a;
meet idempotent : ∀ a, meet a a = a;

join commutative : ∀ a b, join a b = join b a;
join associative : ∀ a b c, join (join a b) c = join a (join b c);
join absorptive : ∀ a b, join a (meet a b) = a
join idempotent : ∀ a, join a a = a;

}.

Infix "u" := meet.
Infix "t" := join.

Our type class Lattice is parameterized by a set A, and we have declared some
infix notation for meet and join. The scope of these notations extends over the
remainder of this paper.

We can impose an ordering on elements of the lattice with the following defi-
nition:

a≤ b ⇐⇒ a = aub ⇐⇒ b = atb.

We could also give an order-theoretic presentation of lattices by starting with a
partially-ordered set, such that for any two elements, the meet and the join are
the infimum and supremum, respectively. Let’s continue by first giving a defi-
nition for what it means to be a partial order: a binary relation that is reflexive,
antisymmetric and transitive.

Class Order (A : Set) := {
le : A→ A→ Prop;
reflexive : ∀ a, le a a;
antisymmetric : ∀ a b, le a b ∧ le b a→ a = b;
transitive : ∀ a b c, le a b ∧ le b c→ le a c

}.

Infix "≤" := le.

Again, we have given some convenient notation for the ordering relation. These
two type classes can be combined into a single consistent type class that represents
the concept of a lattice-ordered set: something that is both a lattice and a partial
order, and the two are consistent according to the definition given above.
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Class LOSet (A : Set) := {
order :> Order A;
lattice :> Lattice A;
consistent : ∀ a b, a ≤ b↔ a = a u b

}.

The notation :> is Coq’s version of subclassing for type classes: a LOSet
is also an Order and a Lattice. For many of the definitions in the rest of this
paper, we will need to use meet, join or le, so we will need to parameterize
each definition by a lattice-ordered set. We can do this implicitly by using the
Context command. This introduces both a set A and an instance l of the type
class into scope. Again, we will assume this scope extends over the remainder of
this paper.

Context ‘{l : LOSet A}.

For any elements a,b,x of the lattice A, we can give the following universal
property for meet,

Theorem meet is glb : ∀ a b : A,
∀ x, x ≤ a ∧ x ≤ b↔ x ≤ a u b.

Read from right to left this says that every x below a meet is a lower bound, and
conversely, the meet is the greatest of every lower bound. By trivially instantiating
x to be au b, we derive the inequalities: au b ≤ a and au b ≤ b. The duals of
these properties hold for join,

Theorem join is lub : ∀ a b : A,
∀ x, a ≤ x ∧ b ≤ x↔ a t b ≤ x.

and a≤ atb and b≤ atb. The theorems meet is glb and join is lub, whose
proofs proceed by straightforward induction, are two out of a collection of the-
orems and lemmas that have been developed in the process of implementing our
lattice proof tactic. Their purpose is ultimately for the major correctness proofs,
however, this is not the limit of their usefulness.

1.3 SOLVING LATTICE (IN)EQUALITIES

Our aim is an automatic procedure, but we will begin with an example to discuss
how proofs proceed on paper as well as in Coq. We use the median property of a
lattice as our starting example,

(aub)t (bu c)t (cua)≤ (atb)u (bt c)u (cta).

In words, the join of the meets is at most the meet of the joins. We can give an ele-
gant equational proof of this property by repeatedly using the universal properties
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of meet and join (meet is glb and join is lub).

(aub)t (bu c)t (cua)≤ (atb)u (bt c)u (cta)
⇔ { universal property of t }

(aub≤ rhs)∧ (bu c≤ rhs)∧ (cua≤ rhs)
⇔ { universal property of u }

(aub≤ atb)∧ (aub≤ bt c)∧ (aub≤ cta)∧ . . .

This is a conjunction of nine inequalities, where each meet on the left hand side
is compared to each join on the right hand side, each of which can be proved by
transitivity and the inequalities derived above. For example the second conjunct
follows from: aub≤ b≤ bt c. The other conjuncts follow similarly.

This is what we might call a human consumable proof. It is certainly not in a
form that can be immediately verified with a system such as Coq. The first two
steps of the proof above use the universal properties of meet and join. To repeat
these two steps in Coq we must use the equivalences in the theorems meet is glb
and join is lub as right-to-left rewrite rules. The following is a Coq formalization
of the median inequality.

Lemma median inequality : ∀ x y z : A,
(x u y) t (y u z) t (z u x) ≤ (x t y) u (y t z) u (z t x).

Proof.
intros x y z.
set (lhs := (x u y) t (y u z) t (z u x)).
repeat (rewrite← (meet is glb lhs)).
unfold lhs.
repeat (rewrite← (join is lub (x t y))).
repeat (rewrite← (join is lub (y t z))).
repeat (rewrite← (join is lub (z t x))).
intuition

(apply (transitive (b := x)); split; auto with order; fail) ||
(apply (transitive (b := y)); split; auto with order; fail) ||
(apply (transitive (b := z)); split; auto with order; fail).

Qed.

This formal proof follows exactly the same structure as the paper-and-pencil
proof, however, without the first as a guide, it would very difficult to get an in-
tuition without interactively stepping through the proof. This is unfortunately a
general comment one can make about proof developments in Coq. This proof is
short and has achieved its length by using several of Coq’s automation features:
the repeat tactical and the tactics inituition and auto. The auto tactic
is invoked with hints from the order namespace, which has been populated with
lemmas from our library. We have not presented this proof in the hope that the
reader will comprehend it, but rather to give a sense of the sort of proofs we will
be automating. Before moving on, there is one final comment to be made about
proofs involving rewriting. In this proof, a total of 8 rewrites are needed, and the
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story is similar for other lattice equalities and inequalities. More recent versions
of Coq have increased the control over the application of the rewrite tactic,
however, rewrite is fundamentally fragile to change. Even something as sim-
ple as changing the order or parentheses will likely cause an application of the
rewrite tactic to break. There are also technical reasons why a substantial use
of rewriting is undesirable in Coq (see Section 6), but for now, our simple motiva-
tion is to provide as much automation to users as possible. Therefore, our goal is
to produce a tactic that can turn the proof of the median equality into a one-liner.

Lemma median inequality : ∀ x y z : A,
(x u y) t (y u z) t (z u x) ≤ (x t y) u (y t z) u (z t x).

Proof.
solve lattice inequality.

Qed.

For the purposes of a running example, we will use the following smaller
inequality, which requires all but idempotence to prove.

aub≤ atb

⇔ { induced ordering }
aub = (aub)u (atb)

⇔ { associativity and commutativity }
aub = au (bu (bta))

⇔ { absorption }
aub = aub

⇔ { reflexivity }
True

The corresponding Coq proof is as follows.

Lemma running example : ∀ a b : A,
a u b ≤ a t b.

Proof.
intros a b.
rewrite consistent.
rewrite meet associative.
rewrite join commutative.
rewrite meet absorptive.
reflexivity.

Qed.

1.4 A DECISION PROCEDURE FOR LATTICES

We will now present a step-by-step development of a decision procedure for
(in-)equalities on lattices, introducing the concept of a free lattice along the way.
We eschew a mathematical presentation in favour of a concrete one in Coq.
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We will begin by defining lattice terms. Variables are terms, and given two
terms t1 and t2, we can construct terms representing the meet and the join. The set
of terms can be defined by the following inductive type in Coq.

Inductive Term : Set :=
| Var : nat→ Term
|Meet : Term→ Term→ Term
| Join : Term→ Term→ Term.

The type Term is of sort Set, and it consists of three data-constructors. The
constructors Meet and Join both take two terms and construct a term. Variables
are simply identified by natural numbers.

As an illustration of simple recursive functions on terms, each term has a
length (or rank) and a depth (or complexity), which are defined by the follow-
ing functions.

Fixpoint length (t : Term) : nat :=
match t with
| Var n⇒ 1
|Meet t1 t2 ⇒

1 + length t1 + length t2
| Join t1 t2 ⇒

1 + length t1 + length t2
end.

Fixpoint depth (t : Term) : nat :=
match t with
| Var n⇒ 0
|Meet t1 t2 ⇒

1 + max (depth t1) (depth t2)
| Join t1 t2 ⇒

1 + max (depth t1) (depth t2)
end.

There are a number of important points to note here. There is no general recursion
in Coq, so recursive functions defined with the Fixpoint command must use
structural recursion. For length and depth, each recursive call must operate on a
subterm of the input term. Furthermore, functions must be total and terminating,
and pattern matching must be complete.

Using the expressive power of dependent types, we can encode a subterm re-
lation on terms as an inductive data-type. The inductive type Subterm is indexed
by two terms and is a proposition (an element of sort Prop).

Inductive Subterm : Term→ Term→ Prop :=
|Meet1 : ∀ t1 t2, Subterm t1 (Meet t1 t2)
|Meet2 : ∀ t1 t2, Subterm t2 (Meet t1 t2)
| Join1 : ∀ t1 t2, Subterm t1 (Join t1 t2)
| Join2 : ∀ t1 t2, Subterm t2 (Join t1 t2).

In words, the first data-constructor Meet1 says, for all terms t1 and t2, t1 is a
subterm of (Meet t1 t2). Note that this relation is irreflexive (a strict partial-order)
and induces a well-founded relation. We will make use of this relation later to
prove the termination of functions on terms that do not follow a simple structural
recursion scheme.

Let t be a term and A be a lattice-ordered set, then we can evaluate t in the
lattice by providing an environment (env : nat→ A) that maps the free variables
to elements of the lattice.
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Fixpoint eval (t : Term) (env : nat→ A) {struct t} : A :=
match t with
| Var n⇒ env n
|Meet t1 t2 ⇒ Jt1Kenv u Jt2Kenv
| Join t1 t2 ⇒ Jt1Kenv t Jt2Kenv
end where "J t Kenv" := (eval t env).

The eval function is within the scope of the earlier Context command, so is
parameterized by an instance of the LOSet type class. In the function body, the bi-
nary operators u and t are the meet and join of the parameterized lattice-ordered
set. The annotation {struct t} indicates to Coq that eval will structurally re-
curse over the term argument. The function eval is a fold over terms, with Meet
mapped to meet, Join mapped to join and variables mapped to lattice elements
using the provided environment.

A lattice has an ordering via the induced ordering given in Section 2.2; let’s
specify what it means for lattice terms (of type Term) to be ordered. Using eval
we can define a semantic preorder (quasiorder) on terms. Let s, t be terms, then
s is semantically less than or equal to t, if and only if for all lattices and for all
environments, the evaluation of s is less than or equal to the evaluation of t. An
equivalence relation can be defined similarly.

Definition Leq (s t : Term) : Prop := ∀ env, JsKenv ≤ JtKenv.

Definition Equiv (s t : Term) : Prop := ∀ env, JsKenv = JtKenv.

Note that there is only one universal quantifier in each of these definitions, yet
above we said that we are quantifying over all lattices and all environments. This
is because of the implicit quantification introduced by the Context command.
When restricted to variables, both the preorder and the equivalence relation are
exactly the equality relation. The relation clearly cannot be more permissive for
exactly the reason that we are quantifying over all lattices and all environments.
The relation Equiv is also a congruence relation over meet and join.

The Equiv relation allows us to express the mathematical concept of a free
lattice. Let T be the lattice terms build from the set of variable indices N (where
N ⊆N) then the free lattice is the quotient set of T by equivalence relation Equiv.
Informally the free lattice is an object where all the lattice laws hold but nothing
more. If we can prove a proposition about a free lattice, then it holds for all
lattices, a powerful statement indeed!

The relations Leq and Equiv very succinctly specify ordering and equivalence
on lattice terms, however, they go no where in informing us how to actually com-
pute the ordering or equivalence of two concrete terms. A free lattice is really
only a useful structure, to us at least, if we have a decision procedure for the or-
dering relation Leq (Equiv can be computed from Leq). The word problem for
free lattices is the problem of finding such a procedure.

Let’s begin by exploring the simple cases of this problem. As noted before,
variables of lattice terms are only comparable by equality. If we have two terms
s and t, and s is (Var i) and t is (Var j), then (Leq s t) holds iff i = j. Now
suppose that s is (Join a b) and t is any term, then by the universal property of
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join (join is lub), (Leq s t) holds iff (Leq a t) and (Leq b t) holds. Similarly,
suppose that s is any term and t is (Meet a b), then by the universal property of
meet (meet is glb), (Leq s t) holds iff (Leq s a) and (Leq s b) holds. The tricky
case is when s is (Meet a b) and t is (Join c d), when a meet is below a join!
Whitman has given a very influential solution to this problem [16].

Whitman’s Solution

In the case of a meet below a join, Whitman gave the following solution, and this
is known as Whitman’s condition:

If s = Meet s1 s2 and t = Join t1 t2 and Leq s t, then either Leq si t for
some i, or Leq s t j for some j.

We refer the reader to Freese et. al. [7] for the proof and a full presentation on
free lattices.

The complete solution is of course a computable preorder . on lattice terms.
Using Whitman’s condition, along with equality on variables and the universal
properties of meet and join, the following enumerates all six cases for the com-
putable preorder ..

1. If s = Var i and t = Var j, then s . t holds iff i = j.

2. If s = Join s1 s2, then s . t holds iff s1 . t and s2 . t.

3. If t = Meet t1 t2, then s . t holds iff s . t1 and s . t2.

4. If s = Var i and t = Join t1 t2, then s . t holds iff s . t1 or s . t2.

5. If s = Meet s1 s2 and t = Var i, then s . t holds iff s1 . t or s2 . t.

6. If s = Meet s1 s2 and t = Join t1 t2, then s . t holds iff s1 . t or s2 . t or s . t1
or s . t2.

Cases four and five have been introduced as special cases of Whitman’s condition,
when a variable is below a join and above a meet. Whitman’s solution gives a
preorder . on lattice terms, with which we can construct the equivalence relation
in the standard way: s∼ t ⇐⇒ s . t ∧ t . s.

Now we have a decision procedure in hand, we can revisit our running ex-
ample: au b ≤ at b. Before we proceed, we must reflect the inequality from a
problem in a lattice, to a problem on lattice terms: Meet a b . Join a b. Originally
a and b were elements of a lattice, but now in an abuse of notation they are now
variables for lattice terms. We let a = Var 0 and b = Var 1. To begin, the sixth
case applies (Whitman’s condition) and we recurse with a . Join a b. Now the
forth case applies and we recurse with a . a, and finally the first case applies and
we succeed by equality.

Figure 1.1 lists an implementation in Coq that very closely matches the math-
ematical presentation of Whitman’s solution. There are a number of points of
interest with respect to this implementation. We will start by focusing on the type
of leq. The function take a pair of terms as input (Term × Term) and returns
a boolean value, but not just a boolean value. The return type of leq is a subset
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Program Fixpoint leq (p : Term × Term) {wf R}
: { b : bool | Is true b→ Leq (fst p) (snd p) } :=
match p with
| (s, t)⇒
match (s, t) with
| (Var i, Var j)⇒ nat eq bool i j
| (Join s1 s2, t)⇒ s1 . t ∧ s2 . t
| (s, Meet t1 t2)⇒ s . t1 ∧ s . t2
| (Var m, Join t1 t2)⇒ s . t1 ∨ s . t2
| (Meet s1 s2, Var n)⇒ s1 . t ∨ s2 . t
| (Meet s1 t2, Join t1 t2)⇒ s1 . t ∨ s2 . t ∨ s . t1 ∨ s . t2
end

end where "s . t" := (leq (s, t)).

Next Obligation.
...

FIGURE 1.1. leq: A variant of Whitman’s algorithm in Coq

type, which has the general form { x : A | P x }. In words, this is the subset of ele-
ments of type A that satisfy the predicate P. The predicate used in the return type
of leq states that the truth of the boolean value implies the truth of the semantic
preorder on the input terms. This is exactly the correctness property of leq, that
it is sound with respect to Leq. Subset types are another example of dependent
types: they are a dependent pair consisting of a value and a property that depends
on the value, so an inhabitant of a subset type is a value and a proof object that
depends on that value.

The expressive power of dependent types has allowed us to give a strong spec-
ification of a function in the function’s type itself! However, there is a hitch.
We have added propositions into our types, so as a result we will have proofs in
our programs. We don’t want proofs polluting our computations, and this brings
us onto the next point of interest in the implementation of leq. At the start of
the Figure 1.1, we use the Program command to invoke the PROGRAM exten-
sion [13, 14]. Without this extension, we would not be able to write the body
of the function using Coq’s functional language that we used earlier to define
length, depth, and eval, because we would have to manipulate proof terms. In-
stead, Coq would have forced us to drop into the theorem prover and develop the
body of the function interactively using proof tactics. Writing complex programs
procedurally using tactics, even with automation, is infeasible.

The PROGRAM extension allows us to separate proofs from programs. It uses
the RUSSELL programming language, which is more permissive than Coq: only
the algorithmic content is required as the body of a strongly specified function,
and the user can use non-structural recursion. The RUSSELL type-checker is re-
sponsible for type checking this term, and subsequently the term is elaborated into
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CIC, if indeed the term can been seen as a valid Coq term. It is only at this point
that the proof content of the function is considered and the necessary proof obliga-
tions for termination and correctness are generated. At each point in the program
structure where a proof would normally be required, the RUSSELL type-checker
accepts the absence of the proof and defers its necessity. Figure 1.1 shows only
the algorithmic content of leq. The proofs of proof obligations are written below,
but have been omitted, so proofs are quite literally below the program rather than
in the program. Our definition of leq generates over 30 proof obligations. This
sounds like a lot, but many of the proofs follow a common pattern and with this
insight we have minimized the length of the proof development by using custom
tactics and automation.

One of the restrictions that the PROGRAM extension loosens is the requirement
for structural recursion. Instead, the extension allows one to use a measure func-
tion or a well-founded relation to express termination. This is one of the features
of the PROGRAM extension that we make use of, as Whitman’s solution, or more
precisely Whitman’s condition, is not structurally recursive. It has four recursive
calls, two of which reduce the first term, with the other two reducing the second
term. While termination seems intuitively clear, Coq would not accept this defini-
tion if we were to use the struct annotation as we did in the definition of eval.
Instead, leq uses the annotation {wf R} in its function signature, which indicates
that we are using the well-founded relation R to express termination. The relation
R is the relational symmetric product of the Subterm relation, so it expresses a
well-founded ordering on pairs of terms.

Definition R := symprod Term Term Subterm Subterm.

Many of the proof obligations that the PROGRAM extension will generate will ask
for proofs that recursive calls of leq respect the relation R, as well as a proof that
R is a well-founded relation and thus that Subterm is a well-founded relation.
The latter can be proved by induction on Subterm.

There is scope for a number of optimizations in the implementation of leq.
Firstly, in Figure 1.1 the ∧ and ∨ operators represent the lazy boolean opera-
tors and and or, respectively. The short circuit behaviour provides significant
speedups by eliminating needless computation. A second optimization is to spe-
cialize the behaviour of of the fourth and fifth cases. If the variable on one side
of the inequality is not present in the other, it is not possible for a recursive call to
return true. Two auxiliary specializations of leq are needed, one for a variable on
the left hand side of the inequality and one for the right hand side. For brevity we
have omitted the presentation of this.

1.5 PROOF BY REFLECTION

Suppose that we have a proof goal of the form a≤ b, where a and b are arbitrary
expressions in a lattice-ordered set (they have type A, where A is an instance of the
LOSet type class). To decide this theorem, we must reflect it into our inductive
data-type for lattice terms. Using reflection, we generate two lattice terms s and t
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and an environment env such that,

JsKenv ≡β a and JtKenv ≡β b. (1.1)

This is to say that when evaluated in the extracted environment, terms s and t are
β -convertable with a and b.

This crucial initial step of reflection is implemented in Coq’s tatic language
Ltac [6]. This is an untyped domain-specific metalanguage, the crucial feature
of which is pattern matching on arbitary Coq terms. The first Ltac function that
we need is one to compute the environment from expressions a and b. The en-
vironment is comprised of maximal subexpressions that are not meets or joins,
and these will form the variables. For brevity, we omit this function and instead
present the following tactic that performs the actual reflection.

Ltac reflect env m j t :=
match t with
| (m ?X1 ?X2)⇒ let r1 := reflect env m j X1

with r2 := reflect env m j X2 in
constr:(Meet r1 r2)

| (j ?X1 ?X2)⇒ let r1 := reflect env m j X1
with r2 := reflect env m j X2 in
constr:(Join r1 r2)

| ?X1⇒ let n := inv lookup env X1 in constr:(Var n)
end.

The reflect tactic takes as arguments the environment env, the operators meet and
join (m and j) of the lattice-ordered set and an expression t in that lattice. The
tactic recursively builds up a term from the structure of the lattice expression,
mapping the parameterized meet and join operators to the data-constructors of
Term. When a subexpression is not a meet or a join, it performs an inverse
lookup on the environment to retrieve an index for the Var data-constructor.

The next step is to change the proof goal with the change tactic, which lets
us replace the current goal with another term, provided the replacement is well-
formed and convertible with the goal. To proceed we apply the change tactic
with: JtKenv ≤ JuKenv, which is convertible by equations (1.1).

We are now at the second crucial point in the proof by reflection technique,
where the correctness of leq with respect to Leq comes into play. The proof of
correctness is wrapped up in the definition of leq, however we can easily extract
it by proving the following lemma.

Lemma leq correct : ∀ t u : Term, Is true ‘(t . u)→ ∀ env, JtKenv ≤ JuKenv.

The function Is true interprets booleans as propositions and the notation back-
quote (‘), extracts the boolean value from the subset value returned by leq. Ap-
plying this correctness lemma to our goal gives us a new goal of: Is true ‘(t .
u). To complete the proof we need do nothing more than reduce it to a value! The
speediest way to do this in Coq is with the vm compute tactic, which evaluates
the goal using an optimized call-by-value evaluation bytecode-based virtual ma-
chine [8]. The end result is either the proposition True or the proposition False.
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FIGURE 1.2. Overview of proof by reflection

This entire process can be wrapped up in a single Ltac tactic. We define an
identical tactic for lattice equalities by using a second correctness lemma for the
Equiv equivalence on lattice terms. Figure 1.2 gives a diagrammatical summary
of the proof by reflection technique and the relationships between the constituent
types, functions and lemmas.

1.6 DISCUSSION

Richard Weyhrauch, the author of the FOL proof checker, summarized the essence
of proof by reflection: “to change theorem proving in the theory into evaluation in
the meta-theory” [5]. Harrison, in his survey and critique on the use of reflection,
cuts to the heart of the motivation when he says that “computational reflection
principles do not extend the power of the logic, but may make decisions in it more
efficient” [10]. The use of reflection for solving lattice (in-)equalities has bought
us a lot. Instead of manual rewrites, we have an entirely automatic tactic. Even if
there were a rewrite-based decision procedure, the reflection-based procedure has
one major advantage. Each time rewriting is used in Coq, the type-checker has
to verify the sequence of rewrite steps, whereas the correctness of leq has been
be proved and type-checked once and for all. We have replaced explicit rewriting
steps with implicit reductions.

1.6.1 Related Work

Boutin was the first to use reflection to build decision procedures in Coq, when
he gave the initial implementation of the ring tactic [5]. Boutin’s reflection
step, which he called syntactification, was implemented in Coq’s implementation
language O’Caml. While this does not damage reliability, it means that a tactic
is necessarily tied into the source tree of Coq itself. At the same time, Barthe et.
al. introduced their idea of the ‘two-level approach’, which formalized the idea
of distinguishing between syntax and semantics, however, they dismissed the idea
of using reduction/normalization due to efficiency concerns [3]. This work later
inspired the quote tactic, which performs function inversion and allows one to
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use the two-level approach without diving into the Coq source tree. Oostdijk and
Geuvers presented a proof by reflection tactic for primitive recursive arithmetic,
however efficiency concerns remained and they had no automatic way to perform
the reflection step [12].

In all of this work efficiency was a primary concern. At the time, there were
many proposals for exporting some of the specialist tasks to computer algebra
systems and other external programs. Even Boutin was proposing to extract the
decision procedure from Coq to O’Caml. The issue of reliability is the fundamen-
tal stumbling block for these ideas. Once we step outside the well-understood
ecosystem of Coq, we loose many of the important safety guarantees.

There have been two very important advancements for Coq, with respect to
implementing proof tactics using proof by reflection. The first of these is the intro-
duction of the tactic language Ltac [6]. This remedies the major shortcoming that
Oostdijk and Geuvers found in their work, that the reflection step can finally be
implemented by system users not system designers. The second improvement was
the development of a compiler and a bytecode-based virtual machine for strong
reduction in Coq. This provides significant speed-ups over the original interpreter.
With these two issues addressed, all the components of proof by reflection can be
achieved without needing to leave the Coq ecosystem. Taking advantage of these
features Bertot and Castéran introduced proof by reflection through the example
of identities modulo associativity and commutativity in their book [4], Narboux
presented a decision procedure for geomety [11], and Grégoire and Mahboubi
revisited the ring tactic [9].

The more recent PROGRAM extension may be the final key to the puzzle. Its
use in the development of our implementation of Whitman’s algorithm allowed us
to strike a favourable balance between the intertwining of programs and proofs.
Our type included a specification of the function’s correctness, yet we were not
forced to give up the use of Coq’s functional programming language to implement
the algorithm. The program and the proof are separate, but side by side. Alter-
natively, we could have used a simple type for leq and developed the correctness
proof in its entirety in a separate lemma, yet the PROGRAM extension divided a
single proof into 30 bite-sized chunks. This gave us the confidence to tinker with
the algorithmic part of the definition with the reasonable expectation that at most
only a few proof obligations would change, rather than an entire proof breaking. If
one were to attempt to implement an especially complex decision procedure, this
would appear to be an invaluable property to have. We conjecture that not only
would the correctness proof be more manageable, but the barrier to attempting
optimizations would be lowered.

1.6.2 Future Work

Unfortunately, Whitman’s solution has an exponential running time in the worst
case. This is easy to see; cases 2 through 5 have two recursive calls and Whitman’s
condition in case 6 has four! In practice, leq runs very quickly on most inputs,
however, it is straightforward to construct an input that will force the worst case
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behaviour. For example,

x3u x4u (y3t (x2u x3u (y2t (x1u x2u (y1t (x0u x1))))))
≤

y3t y4t (x3u (y2t y3t (x2u (y1t y2t (x1u (y0t y1))))))

This input takes 3 seconds to falsify (AMD Athlon 2.7GHz), whereas a similarly
sized input will usually take fractions of a second.

This is a computational problem that exhibits the two classic properties of
overlapping subproblems and optimal substructure. Possible future work is to
turn our current implementation of leq into one that uses dynamic programming
to memoize the recursive calls. However, this is not a trivial task. Coq’s program-
ming language is purely functional, there are no arrays, no dynamic hash tables,
so any data-structure that we use for memoization must be purely functional and
operations on that data-structure must all be proved terminating.

1.7 CONCLUSION

In this paper we have presented a new tactic for the Coq proof system that solves
equalities and inequalities in lattices, using an approach known as ‘Proof by Re-
flection’. The engine of this tactic is our implementation of Whitman’s solution
to the word problem for free lattices. We have given a strong specification of our
implementation, and have proved it correct and terminating with respect to this
specification. All of the constituent parts of the tactic have been developed within
Coq, and there are four key feature of Coq that we have used. Firstly, type classes,
which have allowed us to succinctly encode the concept of a lattice-ordered set,
bind together the operators and relations with the laws they must satisfy. Sec-
ondly, the Ltac language has provided the means to interface with users of the
proof assistant and write the crucial reflection step that transforms a proof goal
into our internal representation. Thirdly, Coq’s bytecode-based virtual machine
has made it tolerable to use the proof by reflection approach with a decision pro-
cedure that has an exponential worst case running time. Finally, the PROGRAM
extension has allowed us to separate proofs from programs, so that we can imple-
ment the computational content of our decision procedure using Coq’s functional
language, and provide the necessary proofs subsequently in a segmented fashion.
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