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Fun with phantom types
R.Hinze

Haskell is renowned for its many extensions to the Hindley-Milner type system
(type classes, polymorphic recursion, rank-n types, existential types, functional
dependencies—just to name a few). In this chapter we look at yet another exten-
sion. I can hear you groaning but this is quite a mild extension and one that fits
nicely within the Hindley-Milner framework. Of course, whenever you add a new
feature to a language, you should throw out an existing one (especially if the lan-
guage at hand is named after a logician). Now, for this chapter we abandon type
classes—judge for yourself how well we get along without Haskell’s most beloved
feature.

1 Introducing phantom types

Suppose you want to embed a programming language, say, a simple expression
language in Haskell. Since you are a firm believer of static typing, you would like
your embedded language to be statically typed, as well. This requirement rules
out a simple Term data type as this choice would allow us to freely mix terms of
different types. The next idea is to parameterize the Term type so that Term t
comprises only terms of type t . The different compartments of Term are then
inhabited by declaring constructors of the appropriate types (we confine ourselves
to a few basic operations):

Zero :: Term Int
Succ,Pred :: Term Int → Term Int
IsZero :: Term Int → Term Bool
If :: ∀a .Term Bool → Term a → Term a → Term a.

The types are essentially those of the corresponding Haskell functions except that
every argument and every result type has Term wrapped around it. For in-
stance, the Haskell function succ :: Int → Int corresponds to the constructor
Succ :: Term Int → Term Int .

This term representation meets the typing requirement: we can apply Succ
only to an arithmetic expression; applying Succ to a Boolean expression results
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in a type error. Unfortunately, the above signature cannot be translated into a
data declaration (Haskell’s linguistic construct for introducing constructors). The
reason is simply that all constructors of a data type must share the same result
type, namely, the declared type on the left-hand side. Thus, we can assign Zero
the type Term t but not Term Int . Of course, using the first type would defeat
the purpose of the whole exercise. The only constructor that fits into the scheme
is If , which has the desired general result type.

If only we had the means to constrain the type argument of Term to a certain
type. Now, this is exactly what the aforementioned ‘mild’ extension allows us to
do. Given this extension we declare the Term data type as follows:

data Term t = Zero with t = Int
| Succ (Term Int) with t = Int
| Pred (Term Int) with t = Int
| IsZero (Term Int) with t = Bool
| If (Term Bool) (Term a) (Term a) with t = a.

The with clause that it attached to each constructor records its type constraints.
For instance, Zero has Type t with the additional constraint t = Int . Note that the
with clause of the If constructor is not strictly necessary. We could have simply
replaced a by t . Its main purpose is to illustrate that the type equation may
contain type variables that do not appear on the left-hand side of the declaration.
These variables can be seen as being existentially quantified.

Let us move on to defining an interpreter for the expression language. The
interpreter takes an expression of type Term t to a value of type t . The definition
proceeds by straightforward structural recursion.

eval :: ∀t .Term t → t
eval (Zero) = 0
eval (Succ e) = eval e + 1
eval (Pred e) = eval e − 1
eval (IsZero e) = eval e 0
eval (If e1 e2 e3) = if eval e1 then eval e2 else eval e3

Even though eval is assigned the type ∀t .Term t → t , each equation—with the
notable exception of the last one—has a more specific type as dictated by the type
constraints. As an example, the first equation has type Term Int → Int as Zero
constrains t to Int .

The interpreter is quite noticeable in that it is tag free. If it receives a Boolean
expression, then it returns a Boolean. By contrast, a more conventional interpreter
of type Term → Val has to inject the Boolean into the Val data type. Conversely,
when evaluating a conditional it has to untag the evaluated condition and further-
more it has to check whether the value is actually a Boolean. To make a long
story short, we are experiencing the benefits of static typing. Here is a short inter-
active session that shows the interpreter in action (:type displays the type of an
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expression).

Main〉 let one = Succ Zero
Main〉 :type one
Term Int
Main〉 eval one
1
Main〉 eval (IsZero one)
False
Main〉 IsZero (IsZero one)
Type error: couldn’t match ‘Int’ against ‘Bool’

Main〉 eval (If (IsZero one) Zero one)
1
Main〉 let true = IsZero Zero
Main〉 let false = IsZero one
Main〉 eval (If true true false)
True

Thinking of it, the type Term t is quite unusual. Though Term is param-
eterized, it is not a container type: an element of Term Int , for instance, is an
expression that evaluates to an integer; it is not a data structure that contains
integers. This means, in particular, that we cannot define a mapping function
(a → b) → (Term a → Term b) as for many other data types. How could we
possibly turn expressions of type Term a into expression of type Term b? The
type Term b might not even be inhabited: there are, for instance, no terms of type
Term String . Clearly, types of this characteristic deserve a special name. Since the
type argument of Term is not related to any component, we call Term a phantom

type. The purpose of this chapter is to demonstrate the usefulness and the beauty
of phantom types.

Exercise 1 (Language design) Whenever we define a function that involves a phan-
tom type, we will provide an explicit type signature. Can you imagine why? Hint:
is it possible to infer the types of functions that involve phantom types? 2

Exercise 2 (Language design) In Haskell, constructors are introduced via data
declarations. An alternative is to abandon the data construct and to introduce
constructors simply by listing their signatures. Discuss the pros and cons of the
two alternatives. 2

2 Generic functions

Suppose you are developing an application where the need arises to compress data
to strings of bits. As it happens, you have data of many different types and you
want to program a compression function that works for all of these types. This
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sounds like a typical case for Haskell’s type classes. Alas, I promised to do without
type classes. Fortunately, phantom types offer an intriguing alternative.

The basic idea is to define a type whose elements represent types. For con-
creteness, assume that we need compressing functions for types built from Int and
Char using the list and the pair type constructor.

data Type t = RInt with t = Int
| RChar with t = Char
| RList (Type a) with t = [a ]
| RPair (Type a) (Type b) with t = (a, b)

rString :: Type String
rString = RList RChar

An element rt of type Type t is a representation of t . For instance, Int is represented
by RInt , the type (String , Int) is represented by RPair rString RInt .

Now, the compression function takes a type representation as a first argument
and the to-be-compressed value as the second argument. The following interac-
tive session illustrates the use of compress (note that integers require 32 bits and
characters 7 bits).

Main〉 :type compress RInt
Int → [Bit ]
Main〉 compress RInt 60
<00111100000000000000000000000000>

Main〉 :type compress rString
[Char ] → [Bit ]
Main〉 compress rString "Richard"

<101001011100101111100011100010111100001110100111100100110>

The definition of compress itself is straightforward: it pattern matches on the type
representation and then takes the appropriate action.

data Bit = 0 | 1
compress :: ∀t .Type t → t → [Bit ]
compress (RInt) i = compressInt i
compress (RChar) c = compressChar c
compress (RList ra) [ ] = 0 : [ ]
compress (RList ra) (a : as) = 1 : compress ra a ++ compress (RList ra) as
compress (RPair ra rb) (a, b) = compress ra a ++ compress rb b

We assume that compressInt :: Int → [Bit ] and compressChar :: Char → [Bit ] are
given. Consider the definition of compress (RList ra). Since the list data type has
two constructors, we emit one bit to distinguish between the two cases. In the case
of a non-empty list, we recursively encode the head and the tail. As an aside, if we
extend compress to data types with more than two constructors, we must ensure
that the codes for the constructors have the unique prefix property, that is, no code
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is the prefix of another code. However, we can use the same code for constructors
of different types as compression (as well as decompression) is driven by type.

We can view Type as representing a family of types and compress as imple-
menting a family of functions. Through the first argument of compress we specify
which member of the family we wish to apply. Functions that work for a family
of types are commonly called generic functions. Using a phantom type of type
representations, generic functions are easy to define. Typical examples of generic
functions include equality and comparison functions, pretty printers and parsers.
Actually, pretty printing is quite a nice example, so let us consider this next.

In Haskell, the Show class takes care of converting values into string repre-
sentations. We will define a variant of its show method building upon the pretty-
printing combinators of Chapter ??. The implementation of the Show class is
complicated by the desire to print lists of characters different from lists of other
types: a list of characters is shown using string syntax whereas any other list is
shown as a comma-separated sequence of elements enclosed in square brackets. Us-
ing type representations we can easily single out this special case by supplying an
additional equation.

pretty :: ∀t .Type t → t → Doc
pretty (RInt) i = prettyInt i
pretty (RChar) c = prettyChar c
pretty (RList RChar) s = prettyString s
pretty (RList ra) [ ] = text "[]"
pretty (RList ra) (a : as) = block 1 (text "[" 〈〉 pretty ra a 〈〉 prettyL as)

where prettyL [ ] = text "]"
prettyL (a : as) = text "," 〈〉 line 〈〉 pretty ra a 〈〉 prettyL as

pretty (RPair ra rb) (a, b) = block 1 (text "(" 〈〉 pretty ra a 〈〉 text ","
〈〉 line 〈〉 pretty rb b 〈〉 text ")")

block :: Int → Doc → Doc
block i d = group (nest i d)

Here, prettyInt :: Int → Doc, prettyChar :: Int → Doc, and prettyString :: String →
Doc are predefined functions that pretty print integers, characters, and strings,
respectively.

Exercise 3 Implement generic equality eq :: ∀t .Type t → t → t → Bool and a
generic comparison function compare :: ∀t .Type t → t → t → Ordering . 2

Exercise 4 Families of type-indexed functions can be implemented either using
type classes or using type representations. Discuss differences and commonalities
of the two approaches. 2

Exercise 5 Implement a function uncompress :: ∀t .Type t → [Bit ] → t that un-
compresses a bit string. Hint: use tupling (see IFPH, Section 7.3). Implement a
generic parser parse that converts a string to a value. The function parse should
at least be able to read strings that were generated by pretty . 2
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3 Dynamic values

Even a programming language such as Haskell cannot guarantee the absence of
run-time errors using static checks only. For instance, when we communicate with
the environment, we have to check dynamically whether the imported values have
the expected types. In this section we show how to embed dynamic checking in a
statically typed language.

To this end we introduce a universal data type, the type Dynamic, which
encompasses all static values (whose types are representable). To inject a static
value into the universal type we bundle the value with a representation of its type.

data Dynamic = Dyn (Type t) t

It is important to note that the type variable t is existentially quantified: a dynamic
value is a pair consisting of a type representation of Type t and a value of type t for
some type t . The type Dynamic looks attractive but on a second thought we note
a small deficiency: we can form a list of dynamic values but we cannot turn this list
into a dynamic value itself, simply because the type Dynamic is not representable.
This is, however, easily remedied: we simply add Dynamic to Type t .

data Type t = · · ·
| RDyn with t = Dynamic

Note that Type and Dynamic are now defined by mutual recursion.
Dynamic values and generic functions go well together. In a sense, they are

complementary concepts. It is not too difficult, for instance, to extend the generic
functions of the previous section so that they also work for dynamic values (see
Exercise 7 and 8): a dynamic value contains a type representation, which a generic
function requires as a first argument. The following interactive session illustrates
the use of dynamics and generics (note that the identifier it always refers to the
previously evaluated expression).

Main〉 let ds = [Dyn RInt 60,Dyn rString "Bird" ]
Main〉 :type ds
[Dynamic ]
Main〉 Dyn (RList RDyn) ds
Dyn (RList RDyn) [Dyn RInt 60,Dyn (RList RChar) "Bird"]
Main〉 compress RDyn it
<01010010000011110000000000000000000000000010100011010000

111001011101001111001001100>

Main〉 uncompress RDyn it
Dyn (RList RDyn) [Dyn RInt 60,Dyn (RList RChar) "Bird"]

By pairing a value with its type representation we turn a static into a dynamic
value. The other way round involves a dynamic check. This operation, usually
termed cast, takes a dynamic value and a type representation and checks whether
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the type representation of the dynamic value and the supplied one are identical.
The equality check is defined

tequal :: ∀t u .Type t → Type u → Maybe (t → u)
tequal (RInt) (RInt) = return id
tequal (RChar) (RChar) = return id
tequal (RList ra1) (RList ra2) = liftM list (tequal ra1 ra2)
tequal (RPair ra1 rb1) (RPair ra2 rb2)

= liftM2 pair (tequal ra1 ra2) (tequal rb1 rb2)
tequal = fail "cannot tequal".

If the test succeeds, tequal returns a function that allows us to transform the
dynamic value into a static value of the specified type. Of course, as the types
are equal, this function is necessarily the identity! Turning to the implementation
of tequal , the functions list and pair are the mapping functions of the list and
the pair type constructor. Since the equality check may fail, we must lift the
mapping functions into the Maybe monad (using return, liftM , and liftM2 ). The
cast operation simply calls tequal and then applies the conversion function to the
dynamic value.

cast :: ∀t .Dynamic → Type t → Maybe t
cast (Dyn ra a) rt = fmap (λf → f a) (tequal ra rt)

Here is a short interactive session that illustrates its use.

Main〉 let d = Dyn RInt 60
Main〉 cast d RInt
Just 60
Main〉 cast d RChar
Nothing

Exercise 6 Define functions that compress and uncompress type representations.
Hint: define an auxiliary data type

data Rep = Rep (Type t)

and then implement functions compressRep :: Rep → [Bit ] and uncompressRep ::
[Bit ] → Rep that compress and uncompress elements of type Rep. Why do we
need the auxiliary data type? 2

Exercise 7 Use the results of the previous exercise to implement functions that
compress and uncompress dynamic values. To compress a dynamic value, first
compress the type representation and then compress the static value. Conversely,
to uncompress a dynamic value first uncompress the type representation and then
use the type representation to read in a static value of this type. Finally, extend
the generic functions compress and uncompress to take care of dynamic values. 2

Exercise 8 Implement functions that pretty print and parse dynamic values and
extend the definitions of pretty and parse accordingly. 2
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Exercise 9 Extend the type of type representations Type and the dynamic type
equality check tequal to include functional types of the form a → b. 2

4 Generic traversals and queries

Let us develop the theme of Section 2 a bit further. Suppose you have to write a
function that traverses a complex data structure representing a university’s organ-
isational structure, and that increases the age of a given person. The interesting
part of this function, namely the increase of age, is probably dominated by the
boilerplate code that recurses over the data structure. The boilerplate code is not
only tiresome to program, it is also highly vulnerable to changes in the underlying
data structure. Fortunately, generic programming saves the day as it allows us to
write the traversal code once and use it many times. Before we look at an example
let us first introduce a data type of persons.

type Name = String
type Age = Int
data Person = Person Name Age

To be able to apply generic programming techniques, we add Person to the type
of representable types.

data Type t = · · ·
| RPerson with t = Person

Now, the aforementioned function that increases the age can be programmed as
follows (this is only the interesting part without the boilerplate code):

tick :: Name → Traversal
tick s (RPerson) (Person n a)
| s n = Person n (a + 1)

tick s rt t = t

The function tick s is a so-called traversal, which can be used to modify data of
any type (the type Traversal will be defined shortly). In our case, tick s changes
values of type Person whose name equals s; integers, characters, lists etc are left
unchanged.

The following interactive session shows the traversal tick in action. The com-
binator everywhere, defined below, implements the generic part of the traversal: it
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applies its argument ‘everywhere’ in a given value.

Main〉 let ps = [Person "Norma" 50,Person "Richard" 59]
Main〉 everywhere (tick "Richard") (RList RPerson) ps
[Person "Norma" 50,Person "Richard" 60]
Main〉 total age (RList RPerson) it
110
Main〉 total sizeof rString "Richard Bird"

60

The second and the third example illustrate generic queries: age computes the age
of a person, sizeof yields the size of an object (the number of occupied memory
cells), total applies an integer query to every component of a value and sums up
the results.

Turning to the implementation the type of generic traversals is given by:

type Traversal = ∀t .Type t → t → t .

A generic traversal takes a type representation and transforms a value of the spec-
ified type. The universal quantifier makes explicit that the function works for all
representable types. The simplest traversal is copy , which does nothing.

copy :: Traversal
copy rt = id

Traversals can be composed using the operator ‘◦’, which has copy as its identity.

(◦) :: Traversal → Traversal → Traversal
(f ◦ g) rt = f rt · g rt

The everywhere combinator is implemented in two steps. We first define a func-
tion that applies a traversal f to the immediate components of a value: C t1 . . . tn
is mapped to C (f rt1 t1) . . . (f rtn tn) where rt i is the representation of ti’s type.

imap :: Traversal → Traversal
imap f (RInt) i = i
imap f (RChar) c = c
imap f (RList ra) [ ] = [ ]
imap f (RList ra) (a : as) = f ra a : f (RList ra) as
imap f (RPair ra rb) (a, b) = (f ra a, f rb b)
imap f (RPerson) (Person n a) = Person (f rString n) (f RInt a)

The function imap can be seen as a ‘traversal transformer’. Note that imap has
a so-called rank-2 type: it takes polymorphic functions to polymorphic functions.
The combinator everywhere enjoys the same type.

everywhere, everywhere ′ :: Traversal → Traversal
everywhere f = f ◦ imap (everywhere f )
everywhere ′ f = imap (everywhere ′ f ) ◦ f
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Actually, there are two flavours of the combinator: everywhere f applies f after
the recursive calls (it proceeds bottom-up), whereas everywhere ′ applies f before
(it proceeds top-down). And yes, everywhere and everywhere ′ have the structure
of generic folds and unfolds—only the types are different (Chapter ?? treats folds
and unfolds in detail).

Generic queries have a similar type except that they yield a value of some fixed
type.

type Query x = ∀t .Type t → t → x

In the rest of this section we confine ourselves to queries of type Query Int . Exer-
cise 11 deals with the general case. The definition of the combinator total follows
the model of everywhere. We first define a non-recursive, auxiliary function that
sums up the immediate components of a value and then tie the recursive knot.

isum :: Query Int → Query Int
isum f (RInt) a = 0
isum f (RChar) a = 0
isum f (RList ra) [ ] = 0
isum f (RList ra) (a : as) = f ra a + f (RList ra) as
isum f (RPair ra rb) (a, b) = f ra a + f rb b
isum f (RPerson) (Person s i) = f rString s + f RInt i

total :: Query Int → Query Int
total f rt t = f rt t + isum (total f ) rt t

It remains to define the ad-hoc queries age and sizeof .

age :: ∀t .Type t → t → Age
age (RPerson) (Person n a) = a
age = 0

sizeof :: Query Int
sizeof (RInt) = 2
sizeof (RChar) = 2
sizeof (RList ra) [ ] = 0
sizeof (RList ra) ( : ) = 3
sizeof (RPair ra rb) = 3
sizeof (RPerson) = 3

Using total sizeof we can compute the memory consumption of a data structure.
Actually, the result is a conservative estimate since any sharing of subtrees is
ignored. Note that the empty list consumes no memory since it need be represented
only once (it can be globally shared).

Exercise 10 Prove the following properties of imap (which justify its name).

imap copy = copy

imap (f ◦ g) = imap f ◦ imap g
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Does everywhere satisfy similar properties? 2

Exercise 11 Generalize isum and total to functions

icrush, everything :: ∀x . (x → x → x ) → x → Query x → Query x

such that icrush (+) 0 = isum and everything (+) 0 = total . 2

5 Normalization by evaluation

Let us move on to one of the miracles of theoretical computer science. In Haskell,
one cannot show values of functional types. For reasons of computability, there is
no systematic way of showing functions and any ad-hoc approach would destroy
referential transparency (except if show were a constant function). For instance,
if show yielded the text of a function definition, we could distinguish, say, quick
sort from merge sort. Substituting one for the other could then possibly change
the meaning of a program.

However, what we can do is to print the normal form of a function. This does
not work for Haskell in its full glory, but only for a very tiny subset, the simply
typed lambda calculus. Nonetheless, the ability to do that is rather surprising.
Let us consider an example first. Suppose you have defined the following Haskell
functions (the famous SKI combinators)

s = λx y z → (x z ) (y z )
k = λx y → x
i = λx → x

and you want to normalize combinator expressions. The function reify , defined
below, allows you to do that: it takes a type representation (where b represents the
base type and ‘:→’ functional types) and yields the normal form of a Haskell value
of this type, where the normal form is given as an element of a suitable expression
data type.

Main〉 reify (b :→ b) (s k k)
Fun (λa → a)
Main〉 reify (b :→ (b :→ b)) (s (k k) i)
Fun (λa → Fun (λb → a))
Main〉 let e = (s ((s (k s)) ((s (k k)) i))) ((s ((s (k s)) ((s (k k)) i))) (k i))
Main〉 :type e
∀t . (t → t) → t → t
Main〉 reify ((b :→ b) :→ (b :→ b)) e
Fun (λa → Fun (λb → App a (App a b)))

The last test case is probably the most interesting one as the expression e is quite
involved. We first use Haskell’s type inferencer to determine its type, then we
call reify passing it a representation of the inferred type and e itself. And voilà:
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the computed result shows that e normalizes to a function that applies its first
argument twice to its second.

Now, since we want to represent simply typed lambda terms, we change the
type of type representations to

infixr :→
data Type t = RBase with t = Base

| Type a :→ Type b with t = a → b

b :: Type Base
b = RBase.

Here, Base is the base type of the simply typed lambda calculus. We won’t reveal
its definition until later. To represent lambda terms we use higher-order abstract

syntax. For instance, the lambda term λf.λx.f (f x) is represented by the Haskell
term Fun (λf → Fun (λx → App f (App f x ))), that is, abstractions are repre-
sented by Haskell functions.

data Term t = App (Term (a → b)) (Term a) with t = b
| Fun (Term a → Term b) with t = a → b

Note that since we use higher-order abstract syntax there is no need to represent
variables.

The function reify takes a Haskell value of type t to an expression of type
Term t . It is defined by induction over the structure of types, that is, it is driven
by the type representation of t . Let us consider functional types first. In this case,
reify has to turn a value of type a → b into an expression of type Term (a → b).
The constructor Fun constructs terms of this type, so we are left with converting an
a → b value to a Term a → Term b value (unfortunately, Term does not give rise
to a mapping function). Suppose that there is a transformation of type Term a → a
available. Then we can reflect a Term a to an a, apply the given function, and
finally reify the resulting b to a Term b. In other words, to implement reify we
need its converse, as well. Turning to the base case, this means that we require
functions of type Base → Term Base and Term Base → Base. Fortunately, we
are still free in the choice of the base type. An intriguing option is to set Base to
the fixed point of Term.

newtype Base = In{out :: Term Base }
Then the isomorphisms out and In constitute the required functions. Given these
prerequisites we can finally define reify and its inverse reflect .

reify :: ∀t .Type t → (t → Term t)
reify (RBase) v = out v
reify (ra :→ rb) v = Fun (λx → reify rb (v (reflect ra x )))

reflect :: ∀t .Type t → (Term t → t)
reflect (RBase) e = In e
reflect (ra :→ rb) e = λx → reflect rb (App e (reify ra x ))
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Exercise 12 Implement a show function for Term t . Hint: augment the expression
type Term t by an additional constructor Var of type String → Term t . 2

6 Functional unparsing

Can we program C’s printf function in a statically typed language such as Haskell?
Yes, we can, provided we use a tailor-made type of format directives (rather than
a string). Here is an interactive session that illustrates the puzzle (we renamed
printf to format).

Main〉 :type format (Lit "Richard")
String
Main〉 format (Lit "Richard")
"Richard"

Main〉 :type format Int
Int → String
Main〉 format Int 60
"60"

Main〉 :type format (String :^: Lit " is " :^: Int)
String → Int → String
Main〉 format (String :^: Lit " is " :^: Int) "Richard" 60
"Richard is 60"

The format directive Lit s means emit s literally. The directives Int and String
instruct format to take an additional argument of the types Int and String re-
spectively, which is then shown. The operator ‘:^:’ is used to concatenate two
directives.

The type of format depends on its first argument, the format directive. This
is something we have already seen a number of times: the type of compress, for
instance, depends on its first argument, the type representation. Of course, the
dependence here is slightly more involved. Yet, this smells like a case for phantom
types.

The format directive can be seen as a binary tree of type representations:
Lit s, Int , String form the leaves, ‘:^:’ constructs the inner nodes. The type of
format is essentially obtained by linearizing the binary tree mapping, for instance,
String :^: Lit " is " :^: Int to String → Int → String .

Before tackling the puzzle proper it is useful to reconsider flattening binary
trees (see IFPH, Section 7.3.1). To avoid the repeated use of the expensive ‘++’
operation, one typically defines an auxiliary function that makes use of an accu-
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mulating parameter.

data Btree a = Leaf a | Fork (Btree a) (Btree a)

flatten :: ∀a .Btree a → [a ]
flatten t = flatcat t [ ]

flatcat :: ∀a .Btree a → [a ] → [a ]
flatcat (Leaf a) as = a : as
flatcat (Fork tl tr) as = flatcat tl (flatcat tr as)

The auxiliary function flatcat linearizes the given tree and additionally appends
the accumulator to the result.

Now, this technique can be mirrored on the type level using a two-argument
phantom type.

data Dir x y = Lit String with y = x
| Int with y = Int → x
| String with y = String → x
| Dir y1 y2 :^: Dir x y1 with y = y2

The first argument corresponds to the accumulating parameter and the second to
the overall result. The binary tree is implicitly given by the value constructor.
Forming a functional type in a with clause corresponds to consing an element to a
list. The major difference to the definition of flatcat is that Dir employs a relational
style! In fact, with a little bit of imagination you can read the data declaration as
a relational program (see also Chapter ??).

Now, using Dir we can assign format the type ∀y .Dir String y → y : lineariz-
ing a directive d and plugging in String for the final result type, we obtain y as the
type of format d . Unfortunately, we cannot define format directly since its type
is not general enough to push the recursion through (see Exercise 13). We have
to introduce an auxiliary function that takes a continuation and an accumulating
string argument.

format ′ :: ∀x y .Dir x y → (String → x ) → (String → y)
format ′ (Lit s) = λcont out → cont (out ++ s)
format ′ (Int) = λcont out → λi → cont (out ++ show i)
format ′ (String) = λcont out → λs → cont (out ++ s)
format ′ (d1 :^: d2) = λcont out → format ′ d1 (format ′ d2 cont) out

format :: ∀y .Dir String y → y
format d = format ′ d id ""

Note that format ′ (d1 :^: d2) can be simplified to format ′ d1 · format ′ d2, where
‘·’ is ordinary function composition. This is not a coincidence. In fact, the type
(String → x ) → (String → y) = MapTrans String x y constitutes an arrow (see
Chapter ??).

Exercise 13 Try to implement format :: ∀y .Dir String y → y directly. Where
does the attempt fail? 2
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Exercise 14 The function format ′ exhibits quadratic run-time behaviour. Remedy
this defect. 2

Exercise 15 Instead of using a tree-like structure for format directives, we can
alternatively employ a list-like structure.

data Dir x = End with x = String
| Lit String (Dir y) with x = y
| Int (Dir y) with x = Int → y
| String (Dir y) with x = String → y

Implement format :: ∀x .Dir x → x using this type. Hint: define an auxiliary
function of type format ′ :: ∀x .Dir x → String → x . 2

7 A type equality type

We have seen in the previous sections that with clauses add considerably to the
expressiveness of Haskell. Rather surprisingly, with clauses need not be a primitive
concept, they can be simulated using polymorphic types. The resulting programs
are more verbose—this is why we have used with clauses in the first place—but
they can be readily evaluated using a Haskell 98 implementation that additionally
supports existential types.

The principle idea is to represent type equations by a type equality type: the
data declaration

data T t = · · · | C t1 . . . tn with t = u | · · ·
becomes

data T t = · · · | C (u :=: t) t1 . . . tn | · · · ,
where ‘:=:’ is a binary type constructor, the type equality type. This type has
the intriguing property that it is non-empty if and only if its argument types are
equal.1 Even more intriguing, its definition goes back to Leibniz. According to
Leibniz, two terms are equal if one may be substituted for the other. Adapting
this principle to types, we define

newtype a :=: b = Proof {apply :: ∀f . f a → f b}.
Note that the universally quantified type variable f ranges over type constructors

of kind ∗ → ∗. Thus, an element of a :=: b is a function that converts an element
of type f a into an element of f b for any type constructor f . This function can
be seen as constituting a proof of the type equality a = b. The identity function,
for instance, serves as the proof of reflexivity.

refl :: ∀a . a :=: a
refl = Proof id

1We ignore the fact, that in Haskell every type contains the bottom element.
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Since we have extended the value constructor C by an additional argument, we
also have to adapt programs that use C . Every occurrence of the constructor C on
the right-hand side of an equation is replaced by C refl . It is not hard to convince
oneself that C refl has indeed the right type. Occurrences on the left-hand side
are treated as follows: the equation

f (C p1 . . . pn) = e

becomes

f (C p p1 . . . pn) = apply p e.

Assume that f has type ∀t .T t → F t where F t is some type expression possibly
involving t . The with clause associated with C dictates that e has type F u.
The right-hand side of the transformed program, however, must have the type F t .
The proof p of type u :=: t allows us to turn e into a value of the desired type.
Note that the universally quantified type variable f of the type equality type is
instantiated to F .

In some cases it is necessary to guide the Haskell type inferencer so that it
indeed instantiates f to F . The problem is that Haskell employs a kinded first-order

unification. For instance, the types Int → [Bit ] and f Int are not unifiable, since
the type checker reduces the type equation ((→) Int) [Bit ] = f Int to (→) Int = f
and [Bit ] = Int . The standard trick to circumvent this problem is to introduce a
new type F ′ that is isomorphic to F .

newtype F ′ a = In{out :: F a }

The equation then becomes

f (C p p1 . . . pn) = (out · apply p · In) e.

Turning back to the type equality type it is interesting to note that it has all
the properties of an congruence relation. We have already seen that it is reflexive.
It is furthermore symmetric, transitive, and congruent. Here are programs that
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implement the respective proofs.

newtype Flip f a b = Flip{unFlip :: f b a }
symm :: ∀a b . (a :=: b) → (b :=: a)
symm p = unFlip (apply p (Flip refl))

trans :: ∀a b c . (a :=: b) → (b :=: c) → (a :=: c)
trans p q = Proof (apply q · apply p)

newtype List f a = List{unList :: f [a ]}
list :: ∀a b . (a :=: b) → ([a ] :=: [b ])
list p = Proof (unList · apply p · List)

newtype Pair1 f b a = Pair1{unPair1 :: f (a, b)}
newtype Pair2 f a b = Pair2{unPair2 :: f (a, b)}
pair :: ∀a b c d . (a :=: c) → (b :=: d) → ((a, b) :=: (c, d))
pair p1 p2 = Proof (unPair2 · apply p2 · Pair2

· unPair1 · apply p1 · Pair1)

Again, we have to introduce auxiliary data types to direct Haskell’s type inferencer.
As an example, the proof of symmetry works as follows. We first specialize the given
proof of (a :=: b) = (∀f . f a → f b) setting f to (:=: a). We obtain a function of
type (a :=: a) → (b :=: a), which is then passed refl to yield the desired proof of
b :=: a.

Before we conclude, let us briefly revise the type equality check tequal of
Section 3. Recall that tequal returns a conversion function of type t → u that allows
us to transform dynamic values into static values. A far more flexible approach is
to replace t → u by t :=: u, so that we can transform a t to a u in any context.

tequal :: ∀t u .Type t → Type u → Maybe (t :=: u)

The changes to the definition of tequal are simple: we have to replace id by refl ,
and the mapping functions pair and list by the congruence proofs of the same
name.

Exercise 16 Extend the above transformation to cover multiple type arguments
and multiple type equations. 2

Exercise 17 Define conversion functions from :: ∀a b . (a :=: b) → (a → b) and
to :: ∀a b . (a :=: b) → (b → a). Try to implement them from scratch. 2

Exercise 18 We have defined congruence proofs for the list and the pair type con-
structor. Generalize the construction to an arbitrary n-ary data type not neces-
sarily being a functor. 2

8 Chapter notes

This chapter is based on a paper by Cheney and Hinze [2], which shows how to
combine generics and dynamics in a type-safe manner. The term phantom type
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was coined by Leijen and Meijer [8] to denote parameterized types that do not use
their type argument.

There is an abundance of work on generic programming, see, for instance,
[6, 5]. For a gentle introduction to the topic the interested reader is referred to [1].

Section 4 draws from a paper by Lämmel and Peyton Jones [7]. Sections 5
and 6 adopt two pearls by Danvy, Rhiger and Rose [4] and by Danvy [3], respec-
tively. An alternative approach to unparsing is described by Hinze [?].
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