DISSENT: Accountable, Anonymous Communication

Joan Feigenbaum http://www.cs.yale.edu/homes/jf/

Joint work with Bryan Ford (PI), Henry Corrigan-Gibbs, Ramakrishna Gummadi, Aaron Johnson (NRL), Vitaly Shmatikov (UT Austin), Ewa Syta, and David Wolinksy

Supported by DARPA

Problem Statement

- A group of N ≥ 2 parties wish to communicate anonymously, either with each other or with someone outside of the group.
- They have persistent, "real-world" identities and are known, by themselves and the recipients of their communications, to be a group.
- They want a protocol with four properties:
 - ✓ Integrity
 - ✓ Anonymity
 - Accountability
 - Efficiency

Accountability

- Group member i exposes group member j if i obtains proof, verifiable by a third party (not necessarily in the group), that j disrupted a protocol run.
- The protocol maintains accountability if no honest member is ever exposed, and, after every run, either:
 - every honest member successfully receives every honest member's message, or
 - every honest member exposes at least one disruptive member.

Need for Anonymity (1)

Communication in hostile environments

From the BAA: "The goal of the program is to develop technology that will enable safe, resilient communications over the Internet, particularly in situations in which a third party is attempting to discover the identity or location of the end users or block the communication."

Need for Anonymity (2)

- Cash transactions
- Twelve-step programs (pseudonymy)
- Law-enforcement "tip" hotlines
- Websites about sensitive topics, e.g., sexuality, politics, religion, or disease
- Voting

• . . .

Need for Accountability

- Authoritative, credentialed group, e.g.:
 - Board of Directors of an organization
 - Federation of journalists (... think Wikileaks)
 - Registered voters
- Internal disagreement is inevitable.
- Infiltration by the enemy may be feasible.
- > Disruption is expected and must be combated.
- ? It's not clear that "accountability" is the right word to use here (... and that's part of a longer story).

Outline

Prior work on anonymous communication

Basic DISSENT protocol (ACM CCS 2010)

Results to date

Outline

Prior work on anonymous communication

Basic DISSENT protocol (ACM CCS 2010)

Results to date

Major Themes in Prior Work

- General-purpose anonymous-communication mechanisms
 - MIX networks and Onion Routing (OR)
 - Dining-Cryptographers networks (DC-nets)
- Special-purpose mechanisms, e.g.:
 - o Anonymous voting
 - o Anonymous authentication, e.g., group or ring signatures
 - o E-cash

- Client picks a few (e.g., three) anonymizing relays from a cloud of available relays.
- He then builds and uses an **onion** of cryptographic tunnels through the relays to his communication partner.

- Client picks a few (e.g., three) anonymizing relays from a cloud of available relays.
- He then builds and uses an **onion** of cryptographic tunnels through the relays to his communication partner.

- Client picks a few (e.g., three) anonymizing relays from a cloud of available relays.
- He then builds and uses an **onion** of cryptographic tunnels through the relays to his communication partner.

- Client picks a few (e.g., three) anonymizing relays from a cloud of available relays.
- He then builds and uses an **onion** of cryptographic tunnels through the relays to his communication partner.

- Client picks a few (e.g., three) anonymizing relays from a cloud of available relays.
- He then builds and uses an **onion** of cryptographic tunnels through the relays to his communication partner.

Properties of Onion Routing

Key advantages:

- Scalable to large groups of clients and relays
- Can be made interactive (e.g., Tor)
- Widely deployed (e.g., Tor)

Key disadvantages:

- Many vulnerabilities to traffic analysis
- No accountability: Anonymous disruptors can
 - Spam or DoS-attack relays or innocent nodes
 - Compromise other users' anonymity[Borisov et al. '07]

- Information-theoretic group anonymity
- Ex. 1: "Alice+Bob" sends a 1-bit secret to Charlie.

- Information-theoretic group anonymity
- Ex. 1: "Alice+Bob" sends a 1-bit secret to Charlie.

- Information-theoretic group anonymity
- Ex. 1: "Alice+Bob" sends a 1-bit secret to Charlie.

- Information-theoretic group anonymity
- Ex. 1: "Alice+Bob" sends a 1-bit secret to Charlie.

- Information-theoretic group anonymity
- Ex. 1: "Alice+Bob" sends a 1-bit secret to Charlie.

- Information-theoretic group anonymity
- Ex. 2: Homogeneous 3-member anonymity group

- Information-theoretic group anonymity
- Ex. 2: Homogeneous 3-member anonymity group

- Information-theoretic group anonymity
- Ex. 2: Homogeneous 3-member anonymity group

- Information-theoretic group anonymity
- Ex. 2: Homogeneous 3-member anonymity group

- Information-theoretic group anonymity
- Ex. 2: Homogeneous 3-member anonymity group

- Information-theoretic group anonymity
- Ex. 2: Homogeneous 3-member anonymity group

Properties of DC-nets Schemes

Key advantages:

- Provable, information-theoretic anonymity
- Resistence to traffic analysis and collusion

Key disadvantages:

- Not easy to scale up or implement efficiently
- Not widely deployed
- No accountability: Anonymous disruptors can
 - Spam or DoS-attack the group without discovery
 - Force group reformation without being eliminated

Outline

Prior work on anonymous communication

• Basic DISSENT protocol (ACM CCS 2010)

Results to date

Starting Point: Verifiable, Anonymous Shuffling [Brickell and Shmatikov '06]

- N parties with equal-length messages m_1 , ..., m_N send $m_{\pi(1)}$, ..., $m_{\pi(N)}$ to a data collector.
- The protocol provably provides
 - o Integrity: $\{m_1, ..., m_N\} = \{m_{\pi(1)}, ..., m_{\pi(N)}\}$
 - o Anonymity: π is random and not known by anyone.
 - Resistance to traffic analysis and collusion
- DISSENT adds accountability and the ability to handle variable-length messages efficiently.

Basic DISSENT Protocol: Overview

Assumptions:

- Equal-length messages
- Each group member has a signature key pair; all messages are signed.
- Phase 1: Setup
 - Each member chooses two encryption key pairs for this run.
- Phase 2: Onion encryption
 - Each member encrypts his message with everyone's encryption keys.
- Phase 3: Anonymization
 - Each member applies a random permutation to the set of messages.
- Phase 4: Validation
 - Each member i checks that (uncorrupted) m_i is in the permuted set.
- Phase 5: Decryption or Blame
 - If all phase-4 checks succeed, decrypt all of the messages.
 - Else, honest members run a protocol that allows each of them to expose at least one disruptive member.

Phase 1: Setup

- Recall that
 - Members know each others' public verification keys.
 - Members sign (and verify signatures on) all messages.
- Each group member *i* chooses:
 - o Secret message m_i (and pads it if necessary)
 - Outer encryption key pair (O_i, O'_i)
 - Inner encryption key pair (I_i, I'_i)
- Each group member i broadcasts public encryption keys O_i, I_i

Each group member *i*:

- Encrypts m_i with inner keys $I_N,...,I_1$ to create m'_i
- Encrypts m'_{i} with outer keys $O_{N'},...,O_{1}$ to create m''_{i}

Each group member *i*:

- Encrypts m_i with inner keys $I_N,...,I_1$ to create m'_i
- Encrypts m'_{i} with outer keys $O_{N'},...,O_{1}$ to create m''_{i}

Example with N = 3:

Each group member *i*:

- Encrypts m_i with inner keys $I_N,...,I_1$ to create m'_i
- Encrypts m'_{i} with outer keys $O_{N'},...,O_{1}$ to create m''_{i}

Example with N = 3:

 $m_{_1}$

 m_2

 m_3

Each group member *i*:

- Encrypts m_i with inner keys $I_N,...,I_1$ to create m'_i
- Encrypts m'_{i} with outer keys $O_{N'},...,O_{1}$ to create m''_{i}

Example with N = 3:

$$m'_{1} = \{ \{ \{ m_{1} \} I_{3} \} I_{2} \} I_{1} \}$$
 $m'_{2} = \{ \{ \{ m_{2} \} I_{3} \} I_{2} \} I_{1} \}$
 $m'_{3} = \{ \{ \{ m_{3} \} I_{3} \} I_{2} \} I_{1} \}$

Each group member *i*:

- Encrypts m_i with inner keys $I_N,...,I_1$ to create m'_i
- Encrypts m'_{i} with outer keys $O_{N'},...,O_{1}$ to create m''_{i}

Example with N = 3:

$m''_1 = \{ \{ \} $	$m'_1 = \{ \{ \}$	m_1	}I ₃ }I ₂ }I ₁	}O ₃ }O ₂ }O ₁
$m''_{2} = \{ \{ \{ \} \}$	$m'_{2} = \{ \{ \}$	m_2	}I ₃ }I ₂ }I ₁	}O ₃ }O ₂ }O ₁
$m''_{3} = \{ \{ \}$	$m'_{3} = \{ \{ \}$	m_3	}I ₃ }I ₂ }I ₁	$\{O_3, \{O_2, \}O_1\}$

- Member 1 collects (m", ..., m").
- For $i \leftarrow 1$ to N, member i
 - o Decrypts the *i*th layer of outer-key encryption
 - Randomly permutes the resulting list (of partially decrypted messages) and (temporarily) saves the random permutation
 - o Forwards the permuted list to member i+1 (if i < N)
- Member N broadcasts the permuted m'_{i} list.

$$m''_{i} = \{ \{ \{ m'_{i} = \{ \{ \{ m_{i} \} \}_{3} \}_{1} \}_{1} \} O_{3} \} O_{2} \} O_{1}$$

```
m''_{i} = \{ \{ \{ m'_{i} = \{ \{ \} \} \} \} \}
                                            \{I_3, \{I_2, \{I_1, I_2, I_1\}\}
                                                                \{O_3, O_2, O_1\}
                                 m_{i}
Input to member 1:
encrypted messages m",
\{\{\{\{\{\{m_2\}\}\}\}\}\}\}
{{{
        m<sub>3</sub> }}} }}
```

```
m''_{i} = \{ \{ \{ m'_{i} = \{ \{ \} \} \} \} \}
                                                                      O_3 O_2 O_1
                                                 \{I_3, \{I_2, \{I_1, I_2, I_1\}\}\}
                                      m_i
 Input to member 1:
 encrypted messages m",
 {{{
          m<sub>1</sub> }}} }}
 \{\{\{\{\{\{m_2\}\}\}\}\}\}\}
 {{{
          m<sub>3</sub> }}} }}
Node 1:
Decrypt,
Permute
```


Phase 4: Validation

After the anonymization phase, no member knows the final permutation, but every member i should see his own m'_i in the list!

Each member i looks for m'_{i} in the permuted list.

- **Present** \rightarrow member *i* broadcasts "GO".
- Absent → member i broadcasts "NO-GO" and destroys his inner decryption key I';

Phase 5: Decryption or Blame

- Each member i collects all GO/NO-GO messages.
- GO messages from all nodes (including self):
 - o Each member i broadcasts his own inner decryption key I'_{i} .
 - o All members use keys $I'_1,...,I'_N$ to decrypt all the m'_j , revealing all the cleartext messages m_j .

NO-GO message from any node:

- Each member i broadcasts the proof that he decrypted and permuted properly in Phase 3.
- All members use these proofs to expose disruptor(s).

How DISSENT Provides Accountability

- Any NO-GO message obliges all members to "prove their innocence," i.e., that they:
 - o correctly encrypted messages in Phase 2
 - correctly decrypted/permuted in Phase 3
 - o correctly validated the final list in Phase 4
- This process reveals the "secret" permutation but leaves the permuted cleartexts m_j undecipherable: They are protected by all honest nodes' inner decryption keys, which have not been revealed.

Handling Variable-Length Messages

- Anonymous-shuffle protocols pad all messages to a common length in order to resist traffic analysis.
- What if the message load is unbalanced, e.g.:
 - o Member i wants to send an L=646MB video.
 - o Members $j \neq i$ have nothing to send in this run of the protocol.
- The group must shuffle the video and N-1 646MB padded cleartexts, resulting in O(NL) bits per node and $O(N^2L)$ bits total.

Basic "Bulk Send" variant

- Use the (slow) accountable-shuffle protocol to exchange randomly permuted metadata.
- Interpret the random permutation as a "schedule" for exchange of data, which is done using DC-nets.
- Accountability of the DISSENT shuffle allows each group member to verify that all members transmitted the correct data in the proper DC-nets "timeslot."
- Cost of the case in which just one member wants to send L=646MB drops to O(L) bits per node and O(NL) bits total.

Basic Bulk Send (1)

Shuffle **metadata** describing the messages that the nodes want to send.

Basic Bulk Send (1)

Shuffle **metadata** describing the messages that the nodes want to send.

Basic Bulk Send (2)

The shuffled message descriptors form a **schedule** for a DC-nets transmission.

Basic Bulk Send (2)

The shuffled message descriptors form a **schedule** for a DC-nets transmission.

Outline

Prior work on anonymous communication

Basic DISSENT protocol (ACM CCS 2010)

Results to date

Results to Date (1)

- Reduced latency
 - o Multiple bulk sends per shuffle
- Increased scalability (OSDI 2012)
 - o Groups with 5000+ members
 - o **N** clients, **M** servers
 - Secure against both active disruption by up to N-2
 clients and liveness attacks by a (tunable) constant
 fraction of clients. This enables ``churn tolerance."
 - Secure against active disruption by up to *M-1* servers (but not against liveness attacks by servers).

Results to Date (2)

Applications

- o "Anonymity scavenging" for wide-area microblogging
- WiNon: DISSENT-based Web Browsing
 - ✓ "Strong, small" anonymity sets instead of the "large, weak" sets offered by Tor-based browsing tools
- WiNon + Tor
 - ✓ Diverse, wide-area anonymity against weak attacker
 - ✓ Local-area anon./deniability if attacker can defeat Tor
- Formal proofs that basic DISSENT satisfies
 - Integrity
 - Anonymity
 - Accountability

Ongoing and Future Work

- Protection against ``intersection attacks''
- Protection against liveness attacks on servers
- Formal security proofs for enhanced DISSENT protocols
- Integration with other anonymity protocols