Games on Graphs Breaking the O(n m) Barrier for Buechi Games and Maximal End-Component Decomposition

Monika Henzinger joint work with Krishnendu Chatterjee (IST Austria)

Two classical algorithmic problems related to graph games and verification of probabilistic systems:

Buechi games

- Maximal end-component (MEC) decomposition
- Long-standing best known time bounds: O(n m).
- Here: O(n²) and better ...

Graphs vs. Game Graphs

2 types of nodes representing 2 interacting players in games:

- Player 1 (Box)
- Player 2 (Diamond)

Game Graphs

- A game graph $G = ((V,E), (V_1, V_2))$
 - Player 1 states (or vertices) V₁ and player 2 states V₂, and (V₁, V₂) partitions V.
 - E is the set of edges.
 - We assume every vertex has at least one out-edge.
 - Player-i edge: out-edge of player i
 - Notation: n = |V|, m = |E|.
- Game played by moving one token forever:
 - For i = 1, 2: When player i vertex, then player i chooses which out-going edge the token traverses next.

Game Example

Game Example

Game Example

Strategies

- Strategies are rules how to move tokens or how to extend plays.
- Formally, given a history of play (= finite sequence of states) and the current vertex is player *i* vertex, the strategy of player *i* chooses an out-going edge.
 - Player 1 strategy $s_1: V^* \times V_1 \rightarrow V$.
 - Player 2 strategy s_2 : $V^* \times V_2 \rightarrow V$.

Goal of graph game?

- Reachability objective: Given a set T of vertices, the objective is the set of infinite paths that visit the target T at least once.
- Buechi objective: Given a Buechi set B of vertices, the objective is the set of infinite paths that visit some vertex in B *infinitely often*.
- Winning set: Set of vertices v such that player 1 has a strategy to ensure the objective starting at v against all strategies of player 2.
- **Remark**: Memoryless strategies are sufficient.
 - Strategy only depends on *current vertex*, not history
- This talk: Compute the winning set A for player 1 for Buechi objectives, i.e. a set of vertices v s. t. there exists a strategy for player 1 that starting from v a vertex of B is visited infinitely often, no matter how player 2 plays

Motivation for Buechi games

- Formal analysis of reactive system:
 - Vertices represent states, edges represent transitions, infinite paths represent behaviors, and players agents (system vs environment).
- Many other applications in verification
 - Synthesis of specifications given as Buechi automata.
 - Model checking one-alternation¹-calculus.
 - Numerous other applications in verification.

Previous Result

Reachability games:

- O(m) (linear time algorithm) and PTIME-complete [Immerman 81, Beeri 80].
- Winning set aka alternating reachability set
- Buechi games:
 - Classical algorithm: O(nm) [EJ91].
 - In the special case when m = O(n), an O(n²/log n) algorithm [CJH03]

Buechi Games Algorithm

- A simple iterative algorithm using alternating reachability.
- Steps are as follows:
 - 1. Compute player-1 alt-reach set A to the current Buechi set.
 - 2. If A is the set of all vertices of current game graph, then stop and output A as the (Buechi-)winning set.
 - Else U= V \ A. Remove player-2 alt-reach set C to the set U from game graph and continue at Step 1.

• Compute player 1 alt-reach set A to the set B.

- Let U= V \ A. Then U is a trap. Clearly, no vertex of U is winning for player 1.
 - Trap U:
 - every player-1 edge stays in U
 - every player 2 has at least one edge in U
 - no vertex of U belongs to B
- Hence alt-reach for player 2 to U is also not winning for player 1.

- Iterate on the remaining sub-graph.
- Every iteration what is removed is not part of winning set.
- When the iteration stops, all remaining vertices are winning for player 1.
 - Why?

Correctness Proof Idea

- By construction of A
 - Player 2 cannot have an edge from A to a deleted vertex.
 - Every player 1 vertex has at least one edge to a vertex in A

 \Rightarrow Player 1 can ensure from A to reach B, and then to get back to A again, and so on and on.

 \Rightarrow A is winning set for player 1.

- Classical algorithm identifies in each iteration the *largest trap* and removes it until no trap exists anymore
- \Rightarrow Remaining set is winning set
- **Analysis**: O(nm) total time
 - At most n iterations each performs two alt-reachability computations
 - Take time O(m) each
 - O(nm) is tight for classical algorithm
- Remark: Total time for player-2 alt-reachability computation over all iterations is O(m)
 - Edges worked on are removed from the graph
 nood only to speed up time for player 1 alt reachable
 - \Rightarrow need only to speed up time for player-1 alt-reachability

Our New Algorithm

- Idea 1: As long as we find traps, we can remove them, need not find the largest trap.
- Idea 2: Hierarchical graph decomposition technique
 Try first to find traps in sparse graphs
- Running time: O(n²)
 - Better worst case for dense graphs.
 - Along with previous [CJH03] algorithm breaks O(nm) for all cases.

New Algorithm

• For i = 1, ..., log n: Build game graph $G_i = (V, E_i) s.t.$

- $|E_i| = O(2^i n)$ and
- Graph G_{i-1} is a sub-graph of G_i.
 - Use fixed ordering of in-edges and out-edges
 - For in-edges order edges from player-2 non-Buechi vertices before all other edges.

Construction of G_i

For every vertex add the first 2ⁱ out-edges (or all if its out-degree < 2ⁱ).

Construction of G_i

- For every vertex add the first 2ⁱ out-edges (or all if its out-degree < 2ⁱ)
- Additionally for every vertex add the first 2ⁱ in-edges (or all if its in-degree < 2ⁱ)

Construction of G_i

- For every vertex add the first 2ⁱ out-edges (or all if its out-degree < 2ⁱ)
- Additionally for every vertex add the first 2ⁱ in-edges (or all if its in-degree < 2ⁱ)
- \Rightarrow Graph G_{i-1} is a sub-graph of G_i
- $\Rightarrow \mathbf{G} = \mathbf{G}_{\text{log n}}$

New Algorithm

- 2. While $i < \log n + 1$
 - Search for traps in G_i that are also traps in G
 - If such trap U is found then
 - Compute the player-2 alt-reach set C to U, remove it from all graphs G_i, and goto Step 1
 - i = i + 1
- 3. Output remaining vertices as winning set

New Algorithm (cont.)

- Call a player-1 vertex with out-degree $> 2^i$ blue in G_i .
- Problem: Traps in G_i that contain blue vertices might not be traps in G
- Idea: Only search for traps without blue vertices
- Implementation: Treat blue vertices like Buechi vertices in player-1 alt reachability computation
- Search for traps in G_i:
 - Compute player-1 alt reachability set A to the set of Buechi or blue vertices.
- Claim: If V \ A is non-empty, then it is a trap in G.

Correctness of New Algorithm

- Claim: If V \ A is non-empty, then it is a trap in G.
- Proof sketch: When identify a trap U, then all player-1 vertices in U are not-blue
 - All their out-edges of G are in G_i and thus in U
 - No player-1 vertex has an out-edge leaving U in G
 - Every player-2 vertex in U has an out-edge in G_i and thus in G
- When algorithm stops no more traps exist in G as G = G log n
- No traps implies that remaining vertices form winning set (as for classical algorithm)

Running Time Analysis

- Analysis of the size of the trap.
 - Trap U identified in G_i but not in G_{i-1}.
 - We analyze the size of the trap we identify.

Running Time Analysis

- Analysis of the size of the trap.
 - Trap U identified in G_i but not in G_{i-1}.
 - Case 1: U contains a player-1 vertex v that was blue in G_{i-1}.
 - Then v has at least 2ⁱ⁻¹ out-edges, otherwise would not have been blue.
 - Since a trap contains all out-going edges from v, size of trap at least 2ⁱ⁻¹.

- Analysis of the size of the trap.
 - Trap U identified in G_i but not in G_{i-1}.
 - Case 2: U does not contain a player-1 vertex v that was blue in G_{i-1}. All player-1 edges in G_i and G_{i-1} identical.
 - Two sub-cases to analyze.

- Analysis of the size of the trap.
 - Case 2: All player-1 edges in G_i and G_{i-1} identical.
 - Case 2 (a): All player-2 edges in G_i and G_{i-1} are identical. Then U is a trap in G_{i-1} and this a contradiction.
 - Case 2(b): One new player-2 edge in the trap.

- Analysis of the size of the trap.
 - Case 2: All player-1 edges in G_i and G_{i-1} identical.
 - Case 2(b): One new player-2 edge (u,v) in the trap.
 - Vertex u is player-2 non-Buechi vertex, i.e., (u,v) has priority in order of in-edge
 - Vertex v has at least 2^{i-1} in-edges before (u,v) in order of in-edges \Rightarrow v has at least 2^{i-1} in-edges from player-2 non-Buechi vertices

- Analysis of the size of the trap.
 - Case 2(b): One new player-2 edge (u,v) in the trap.
 - Vertex v has at least 2ⁱ⁻¹ in-edges from player-2 non-Buechi vertices ⇒ By construction of U no player-2 non-Buechi vertex of V \ U has an edge to U
 - \Rightarrow All in-edge of v belong to U
 - \Rightarrow U has at least 2ⁱ⁻¹ vertices

New Algorithm

- Time for finding a trap in G_i: O(2ⁱ⁺¹n)
- Key argument: If we find a trap in G_i, then trap of size at least 2ⁱ⁻¹ is removed from G.
- Amortized analysis: Charge O(n) to removed vertices.
- Total time spent until last trap is removed: O(n²)
- Time spent afterwards:

$$\sum_{i=1}^{\log n} 2^{i+1} n = O(n^2)$$

Maximal End-component Decomposition

Maximal End-component Decomposition

- An end-component U is a set of vertices such that
 - Graph induced by U is strongly connected.
 - If |U| > 1, then for all player-2 vertices in U all out-edges end in U.
 - "strongly connected component with no player-2 out-edges"

Graph decomposed into 1 end-component and 1 individual vertex

Maximal End-component Decomposition

- An end-component U is a set of vertices such that
 - Graph induced by U is strongly connected.
 - If |U| > 1, then for all player-2 vertices in U all out-edges end in U.
 - "strongly connected component with no player-2 out-edges"

Graph decomposed into 5 individual vertices (no end-component)

Maximal End-component Decomposition

 Application: Typically used to analyze Markov Decision Processes, where player 2 is the probabilistic player.

- Maximal end-component (MEC) decomposition:
 - Classical algorithm: O(nm) [CY95, deAlfaro97]
- Same algorithm as above but instead of traps search for strongly connected components with no out-edge containing no vertex of B.
 - O(n²)
- Second algorithm: O(m^{1.5})

Conclusion

Buechi games and MEC decomposition:

- A core algorithmic problem in verification with longstanding O(nm) barrier.
- We present a simple O(n²) time algorithm for the problem, also for mec decomposition.
- For mec decomposition also O(m^{1.5}) algorithm that combined gives a worst case O(mn^{2/3}) algorithm.

Open questions:

- $O(mn^{1-\delta})$ or $O(nm^{1-\delta})$ for Buechi games, for some $\delta > 0$
- O(mn^{1/2}) algorithm for mec decomposition.

Generalization of Buechi Games

Parity games:

- Sub-exponential time deterministic [Jurdzindski, Patterson, Zwick '06], pseudo-polynomial time [Zwick, Paterson '96]
- No polynomial-time algorithm known
- NP \cap Co-NP

Mean-payoff games:

- Sub-exponential time randomized algorithm [Björklund, Vorobyov '07], pseudo-polynomial time [Pisaruk '99]
- No polynomial-time algorithm known
 - Polynomial-time algorithm for restricted weight-structures [Chatterjee, H, Krinninger, Nanongkai '12]
- NP \cap Co-NP
- **Open question:** Are they solvable in polynomial time?

Thank you !

