
Games on Graphs
Breaking the O(n m) Barrier for Buechi Games
and Maximal End-Component Decomposition

Monika Henzinger
joint work with Krishnendu Chatterjee (IST Austria)

This Talk

 Two classical algorithmic problems related to graph

games and verification of probabilistic systems:

 Buechi games

 Maximal end-component (MEC) decomposition

 Long-standing best known time bounds: O(n m).

 Here: O(n2) and better …

Graphs vs. Game Graphs

2 types of nodes representing 2 interacting players in games:
• Player 1 (Box)
• Player 2 (Diamond)

Game Graphs

 A game graph G= ((V,E), (V1, V2))
 Player 1 states (or vertices) V1 and player 2 states V2,

and (V1, V2) partitions V.
 E is the set of edges.

 We assume every vertex has at least one out-edge.
 Player-i edge: out-edge of player i

 Notation: n = |V|, m =|E|.

 Game played by moving one token forever:
 For i = 1, 2: When player i vertex, then player i

chooses which out-going edge the token traverses
next.

Game Example

Game Example

Game Example

Strategies

 Strategies are rules how to move tokens or how to
extend plays.

 Formally, given a history of play (= finite sequence of
states) and the current vertex is player i vertex, the
strategy of player i chooses an out-going edge.

 Player 1 strategy s1: V* x V1 → V.

 Player 2 strategy s2: V* x V2 → V.

Goal of graph game?

 Reachability objective: Given a set T of vertices, the objective

is the set of infinite paths that visit the target T at least once.
 Buechi objective: Given a Buechi set B of vertices, the

objective is the set of infinite paths that visit some vertex in B
infinitely often.

 Winning set: Set of vertices v such that player 1 has a
strategy to ensure the objective starting at v against all
strategies of player 2.

 Remark: Memoryless strategies are sufficient.
 Strategy only depends on current vertex, not history

 This talk: Compute the winning set A for player 1 for Buechi
objectives, i.e. a set of vertices v s. t. there exists a strategy
for player 1 that starting from v a vertex of B is visited
infinitely often, no matter how player 2 plays

Motivation for Buechi games

 Formal analysis of reactive system:

 Vertices represent states, edges represent transitions,
infinite paths represent behaviors, and players agents
(system vs environment).

 Many other applications in verification
 Synthesis of specifications given as Buechi automata.
 Model checking one-alternation¹-calculus.
 Numerous other applications in verification.

Previous Result

 Reachability games:

 O(m) (linear time algorithm) and PTIME-complete
[Immerman 81, Beeri 80].

 Winning set aka alternating reachability set

 Buechi games:
 Classical algorithm: O(nm) [EJ91].
 In the special case when m = O(n), an O(n2/log n)

algorithm [CJH03]

Buechi Games Algorithm

Classical Algorithm

 A simple iterative algorithm using alternating
reachability.

 Steps are as follows:
1. Compute player-1 alt-reach set A to the current

Buechi set.

2. If A is the set of all vertices of current game graph,
then stop and output A as the (Buechi-)winning set.

3. Else U= V \ A. Remove player-2 alt-reach set C to
the set U from game graph and continue at Step 1.

Classical Algorithm

 Compute player 1 alt-reach set A to the set B.

B

Classical Algorithm

 Let U= V \ A. Then U is a trap. Clearly, no vertex of U is
winning for player 1.
 Trap U:

 every player-1 edge stays in U
 every player 2 has at least one edge in U
 no vertex of U belongs to B

 Hence alt-reach for player 2 to U is also not winning for player
1.

B A U

alt-reach-1 to B

Classical Algorithm

 Iterate on the remaining sub-graph.
 Every iteration what is removed is not part of winning

set.
 When the iteration stops, all remaining vertices are

winning for player 1.
 Why?

B A U

alt-reach-2 to set U

Correctness Proof Idea

 By construction of A
 Player 2 cannot have an edge from A to a deleted vertex.
 Every player 1 vertex has at least one edge to a vertex in A

⇒ Player 1 can ensure from A to reach B, and then to get back
to A again, and so on and on.
⇒ A is winning set for player 1.

B A

alt-reach-1 to B

Set of
deleted
vertices

Classical Algorithm

 Classical algorithm identifies in each iteration the largest trap
and removes it until no trap exists anymore

⇒ Remaining set is winning set

 Analysis: O(nm) total time
 At most n iterations each performs two alt-reachability

computations
 Take time O(m) each

 O(nm) is tight for classical algorithm

 Remark: Total time for player-2 alt-reachability computation
over all iterations is O(m)
 Edges worked on are removed from the graph
⇒ need only to speed up time for player-1 alt-reachability

Our New Algorithm

 Idea 1: As long as we find traps, we can remove them,
need not find the largest trap.

 Idea 2: Hierarchical graph decomposition technique
 Try first to find traps in sparse graphs

 Running time: O(n2)

 Better worst case for dense graphs.
 Along with previous [CJH03] algorithm breaks O(nm)

for all cases.

New Algorithm

 For i = 1, …, log n: Build game graph Gi=(V,Ei) s.t.
 |Ei|= O(2in) and
 Graph Gi-1 is a sub-graph of Gi.

 Use fixed ordering of in-edges and out-edges
 For in-edges order edges from player-2 non-Buechi

vertices before all other edges.

G1 G2
G3

Glog n

Construction of Gi

 For every vertex add the first 2i out-edges (or all if its
out-degree < 2i).

Gi

At most 2i

Construction of Gi

 For every vertex add the first 2i out-edges (or all if its
out-degree < 2i)

 Additionally for every vertex add the first 2i in-edges (or
all if its in-degree < 2i)

Gi

At most 2i

Construction of Gi

 For every vertex add the first 2i out-edges (or all if its
out-degree < 2i)

 Additionally for every vertex add the first 2i in-edges (or
all if its in-degree < 2i)

⇒ Graph Gi-1 is a sub-graph of Gi

⇒ G = Glog n

New Algorithm

1. i = 1
2. While i < log n +1

 Search for traps in Gi that are also traps in G
 If such trap U is found then

 Compute the player-2 alt-reach set C to U, remove it
from all graphs Gj, and goto Step 1

 i = i + 1
3. Output remaining vertices as winning set

G1 G2
G3

Glog n

New Algorithm (cont.)

 Call a player-1 vertex with out-degree > 2i blue in Gi.
 Problem: Traps in Gi that contain blue vertices might

not be traps in G
 Idea: Only search for traps without blue vertices
 Implementation: Treat blue vertices like Buechi

vertices in player-1 alt reachability computation

 Search for traps in Gi:
 Compute player-1 alt reachability set A to the set of

Buechi or blue vertices.
 Claim: If V \ A is non-empty, then it is a trap in G.

Correctness of New Algorithm

 Claim: If V \ A is non-empty, then it is a trap in G.
 Proof sketch: When identify a trap U, then all player-1 vertices in

U are not-blue
 All their out-edges of G are in Gi and thus in U
 No player-1 vertex has an out-edge leaving U in G
 Every player-2 vertex in U has an out-edge in Gi and thus in G

 When algorithm stops no more traps exist in G as G = G log n
 No traps implies that remaining vertices form winning set (as for

classical algorithm)

G1 G2
G3

Glog n

Running Time Analysis

 Analysis of the size of the trap.
 Trap U identified in Gi but not in Gi-1.
 We analyze the size of the trap we identify.

Gi-1
Gi

Trap U

Running Time Analysis

 Analysis of the size of the trap.
 Trap U identified in Gi but not in Gi-1.
 Case 1: U contains a player-1 vertex v that was blue in Gi-1.
 Then v has at least 2i-1 out-edges, otherwise would not have

been blue.
 Since a trap contains all out-going edges from v, size of trap at

least 2i-1.

Gi-1
Gi

Trap U

Running Time Analysis (cont.)

 Analysis of the size of the trap.
 Trap U identified in Gi but not in Gi-1.
 Case 2: U does not contain a player-1 vertex v that was blue in

Gi-1. All player-1 edges in Gi and Gi-1 identical.
 Two sub-cases to analyze.

Gi-1
Gi

Trap U

Running Time Analysis (cont.)

 Analysis of the size of the trap.
 Case 2: All player-1 edges in Gi and Gi-1 identical.
 Case 2 (a): All player-2 edges in Gi and Gi-1 are identical. Then U

is a trap in Gi-1 and this a contradiction.
 Case 2(b): One new player-2 edge in the trap.

Gi-1
Gi

Trap U

Running Time Analysis (cont.)

 Analysis of the size of the trap.
 Case 2: All player-1 edges in Gi and Gi-1 identical.
 Case 2(b): One new player-2 edge (u,v) in the trap.

 Vertex u is player-2 non-Buechi vertex, i.e., (u,v) has priority in order
of in-edge

 Vertex v has at least 2i-1 in-edges before (u,v) in order of in-edges
⇒ v has at least 2i-1 in-edges from player-2 non-Buechi vertices

Gi-1
Gi

Trap U

u

v

Running Time Analysis (cont.)

 Analysis of the size of the trap.
 Case 2(b): One new player-2 edge (u,v) in the trap.

 Vertex v has at least 2i-1 in-edges from player-2 non-Buechi vertices
⇒ By construction of U no player-2 non-Buechi vertex of V \ U has
an edge to U

 ⇒ All in-edge of v belong to U
 ⇒ U has at least 2i-1 vertices

Gi-1
Gi

Trap U

New Algorithm

 Time for finding a trap in Gi: O(2i+1n)
 Key argument: If we find a trap in Gi, then trap of size

at least 2i-1 is removed from G.
 Amortized analysis: Charge O(n) to removed vertices.
 Total time spent until last trap is removed: O(n2)
 Time spent afterwards:

G1 G2
G3

Glog n

)(2 2log

1
1 nOnn

i
i =∑ =
+

Maximal End-component
Decomposition

Maximal End-component Decomposition

 An end-component U is a set of vertices such that
 Graph induced by U is strongly connected.
 If |U| > 1, then for all player-2 vertices in U all out-edges end in

U.
 “strongly connected component with no player-2 out-edges”

 Graph decomposed
into 1 end-component
and 1 individual vertex

Maximal End-component Decomposition

 An end-component U is a set of vertices such that
 Graph induced by U is strongly connected.
 If |U| > 1, then for all player-2 vertices in U all out-edges end in

U.
 “strongly connected component with no player-2 out-edges”

 Graph decomposed
into 5 individual vertices
(no end-component)

Maximal End-component Decomposition

 Application: Typically used to analyze Markov Decision Processes,
where player 2 is the probabilistic player.

 Maximal end-component (MEC) decomposition:
 Classical algorithm: O(nm) [CY95, deAlfaro97]

 Same algorithm as above but instead of traps search for
strongly connected components with no out-edge
containing no vertex of B.
 O(n2)

 Second algorithm: O(m1.5)

Conclusion

 Buechi games and MEC decomposition:
 A core algorithmic problem in verification with long-

standing O(nm) barrier.
 We present a simple O(n2) time algorithm for the

problem, also for mec decomposition.
 For mec decomposition also O(m1.5) algorithm that

combined gives a worst case O(mn2/3) algorithm.

 Open questions:
 O(mn1-δ) or O(nm1-δ) for Buechi games, for some δ >

0
 O(mn1/2) algorithm for mec decomposition.

Generalization of Buechi Games

 Parity games:
 Sub-exponential time deterministic [Jurdzindski, Patterson, Zwick

’06], pseudo-polynomial time [Zwick, Paterson ‘96]
 No polynomial-time algorithm known
 NP ∩ Co-NP

 Mean-payoff games:
 Sub-exponential time randomized algorithm [Björklund, Vorobyov

‘07], pseudo-polynomial time [Pisaruk ‘99]
 No polynomial-time algorithm known

 Polynomial-time algorithm for restricted weight-structures
[Chatterjee, H, Krinninger, Nanongkai ‘12]

 NP ∩ Co-NP

 Open question: Are they solvable in polynomial time?

Thank you !

Questions ?

	Games on Graphs�Breaking the O(n m) Barrier for Buechi Games and Maximal End-Component Decomposition
	This Talk
	Graphs vs. Game Graphs
	Game Graphs
	Game Example
	Game Example
	Game Example
	Strategies
	Goal of graph game?
	Motivation for Buechi games
	Previous Result
	Buechi Games Algorithm
	Classical Algorithm
	Classical Algorithm
	Classical Algorithm
	Classical Algorithm
	Correctness Proof Idea
	Classical Algorithm
	Our New Algorithm
	New Algorithm
	Construction of Gi
	Construction of Gi
	Construction of Gi
	New Algorithm
	New Algorithm (cont.)
	Correctness of New Algorithm
	Running Time Analysis
	Running Time Analysis
	Running Time Analysis (cont.)
	Running Time Analysis (cont.)
	Running Time Analysis (cont.)
	Running Time Analysis (cont.)
	New Algorithm
	Maximal End-component Decomposition
	Maximal End-component Decomposition
	Maximal End-component Decomposition
	Maximal End-component Decomposition
	Conclusion
	Generalization of Buechi Games
	Slide Number 40

