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This Talk 

 
 Two classical algorithmic problems related to graph 

games and verification of probabilistic systems: 
 

 Buechi games 
 

 Maximal end-component (MEC) decomposition 
 

 Long-standing best known time bounds: O(n m). 
 

 Here: O(n2) and better … 
 



Graphs vs. Game Graphs 

2 types of nodes representing 2 interacting players in games:  
• Player 1 (Box) 
• Player 2 (Diamond) 

 



Game Graphs  

 A game graph G= ((V,E), (V1, V2)) 
 Player 1 states (or vertices) V1  and player 2 states V2, 

and (V1, V2) partitions V. 
 E is the set of edges. 

 We assume every vertex has at least one out-edge. 
 Player-i edge: out-edge of player i 

 Notation: n = |V|, m =|E|. 
 

 Game played by moving one token forever: 
 For i = 1, 2: When player i vertex, then player i 

chooses which out-going edge the token traverses 
next. 



Game Example  
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Strategies 

 Strategies are rules how to move tokens or how to 
extend plays.  

 Formally, given a history of play (= finite sequence of 
states) and the current vertex is player i vertex, the 
strategy of player i chooses an out-going edge. 

 
 Player 1 strategy s1: V* x V1 → V. 

 
 Player 2 strategy s2: V* x V2 → V. 



Goal of graph game? 
 
 Reachability objective: Given a set T of vertices, the objective 

is the set of infinite paths that visit the target T at least once. 
 Buechi objective: Given a Buechi set B of vertices, the 

objective is the set of infinite paths that visit some vertex in B 
infinitely often.  

 Winning set: Set of vertices v such that player 1 has a 
strategy to ensure the objective starting at v against all 
strategies of player 2. 

 Remark:  Memoryless strategies are sufficient. 
 Strategy only depends on current vertex, not history 

 This talk: Compute the winning set A for player 1 for Buechi 
objectives, i.e. a set of vertices v s. t. there exists a strategy 
for player 1 that starting from v a vertex of B is visited 
infinitely often, no matter how player 2 plays 
 
 



Motivation for Buechi games 

 
 Formal analysis of reactive system: 

 Vertices represent states, edges represent transitions, 
infinite paths represent behaviors, and players agents 
(system vs environment).  
 

 Many other applications in verification 
 Synthesis of specifications given as Buechi automata. 
 Model checking one-alternation¹-calculus. 
 Numerous other applications in verification. 



Previous Result 

 
 Reachability games:  

 O(m) (linear time algorithm) and PTIME-complete 
[Immerman 81, Beeri 80]. 

 Winning set aka alternating reachability set 
 

 Buechi games:  
 Classical algorithm: O(nm) [EJ91]. 
 In the special case when m = O(n), an O(n2/log n) 

algorithm [CJH03] 
 



Buechi Games Algorithm 



Classical Algorithm 

 A simple iterative algorithm using alternating 
reachability. 
 

 Steps are as follows: 
1. Compute player-1 alt-reach set A to the current 

Buechi set. 
 

2. If A is the set of all vertices of current game graph, 
then stop and output A as the (Buechi-)winning set. 
 

3. Else U= V \ A. Remove player-2 alt-reach set C to 
the set U from game graph and continue at Step 1.  

 



Classical Algorithm 

 
 
 
 
 
 

 Compute player 1 alt-reach set A to the set B. 

B 



Classical Algorithm 

 
 
 
 
 
 
 
 

 Let U= V \ A. Then U is a trap. Clearly, no vertex of U is  
winning for player 1.  
 Trap U:  

 every player-1 edge stays in U 
 every player 2 has at least one edge in U 
 no vertex of U belongs to B 

 Hence alt-reach for player 2 to U is also not winning for player 
1. 

B A U 

alt-reach-1 to B 



Classical Algorithm 

 
 
 
 
 
 
 

 Iterate on the remaining sub-graph. 
 Every iteration what is removed is not part of winning 

set.  
 When the iteration stops, all remaining vertices are 

winning for player 1. 
 Why? 

B A U 

alt-reach-2 to set U 



Correctness Proof Idea 

 
 
 
 
 
 
 
 

 By construction of A  
 Player 2 cannot have an edge from A to a deleted vertex. 
 Every player 1 vertex has at least one edge to a vertex in A  

⇒ Player 1 can ensure from A to reach B, and then to get back 
to A again, and so on and on. 
⇒ A is winning set for player 1. 

B A 

alt-reach-1 to B 

Set of  
deleted 
vertices 



Classical Algorithm 
 

 Classical algorithm identifies in each iteration the largest trap 
and removes it until no trap exists anymore 

⇒ Remaining set is winning set 
 

 Analysis: O(nm) total time 
 At most n iterations each performs two alt-reachability 

computations 
 Take time O(m) each 

 O(nm) is tight for classical algorithm 
 

 Remark: Total time for player-2 alt-reachability computation 
over all iterations is O(m) 
 Edges worked on are removed from the graph 
⇒ need only to speed up time for player-1 alt-reachability 

 



Our New Algorithm 

 Idea 1: As long as we find traps, we can remove them, 
need not find the largest trap. 
 

 Idea 2: Hierarchical graph decomposition technique 
 Try first to find traps in sparse graphs 

 
 Running time: O(n2) 

 Better worst case for dense graphs. 
 Along with previous [CJH03] algorithm breaks O(nm) 

for all cases. 
  



New Algorithm 

 For i = 1, …, log n: Build game graph Gi=(V,Ei) s.t. 
 |Ei|= O(2in) and 
 Graph Gi-1 is a sub-graph of Gi. 

 Use fixed ordering of in-edges and out-edges 
 For in-edges order edges from player-2 non-Buechi 

vertices before all other edges. 
 

 
 

G1 G2 
G3 

Glog n 



Construction of Gi 

 For every vertex add the first 2i out-edges (or all if its 
out-degree < 2i).   
 

Gi 

At most 2i 



Construction of Gi 

 For every vertex add the first 2i out-edges (or all if its 
out-degree < 2i)  

 Additionally for every vertex add the first 2i in-edges (or 
all if its in-degree < 2i) 

 

Gi 

At most 2i 



Construction of Gi 

 For every vertex add the first 2i out-edges (or all if its 
out-degree < 2i)  

 Additionally for every vertex add the first 2i in-edges (or 
all if its in-degree < 2i) 
 

⇒ Graph Gi-1 is a sub-graph of Gi 

⇒ G = Glog n 
 



New Algorithm 

1. i = 1 
2. While i < log n +1 

 Search for traps in Gi that are also traps in G 
 If such trap U is found then 

 Compute the player-2 alt-reach set C to U, remove it  
from all graphs Gj, and goto Step 1 

 i = i + 1 
3. Output remaining vertices as winning set 

 
 

G1 G2 
G3 

Glog n 



New Algorithm (cont.) 

 Call a player-1 vertex with out-degree > 2i  blue in Gi. 
 Problem: Traps in Gi that contain blue vertices might 

not be traps in G 
 Idea: Only search for traps without blue vertices 
 Implementation: Treat blue vertices like Buechi 

vertices in player-1 alt reachability computation 
 

 Search for traps in Gi: 
 Compute player-1 alt reachability set A to the set of 

Buechi or blue vertices. 
 Claim: If V \ A is non-empty, then it is a trap in G. 

 



Correctness of New Algorithm 

 Claim: If V \ A is non-empty, then it is a trap in G. 
 Proof sketch: When identify a trap U, then all player-1 vertices in 

U are not-blue 
 All their out-edges of G are in Gi and thus in U 
 No player-1 vertex has an out-edge leaving U in G 
 Every player-2 vertex in U has an out-edge in Gi and thus in G 

 When algorithm stops no more traps exist in G as G = G log n 
 No traps implies that remaining vertices form winning set (as for  

classical algorithm) 

G1 G2 
G3 

Glog n 



Running Time Analysis 

 Analysis of the size of the trap. 
 Trap U identified in Gi but not in Gi-1.  
 We analyze the size of the trap we identify. 

Gi-1 
Gi 

Trap U 



Running Time Analysis 

 Analysis of the size of the trap. 
 Trap U identified in Gi but not in Gi-1.  
 Case 1: U contains a player-1 vertex v that was blue in Gi-1. 
 Then v has at least 2i-1 out-edges, otherwise would not have 

been blue.  
 Since a trap contains all out-going edges from v, size of trap at 

least 2i-1. 
 

Gi-1 
Gi 

Trap U 



Running Time Analysis (cont.) 

 Analysis of the size of the trap. 
 Trap U identified in Gi but not in Gi-1.  
 Case 2: U does not contain a player-1 vertex v that was blue in 

Gi-1. All player-1 edges in Gi and Gi-1 identical. 
 Two sub-cases to analyze. 

 

Gi-1 
Gi 

Trap U 



Running Time Analysis (cont.) 

 Analysis of the size of the trap. 
 Case 2: All player-1 edges in Gi and Gi-1 identical. 
 Case 2 (a): All player-2 edges in Gi and Gi-1 are identical. Then U 

is a trap in Gi-1 and this a contradiction. 
 Case 2(b): One new player-2 edge in the trap. 

 
 

Gi-1 
Gi 

Trap U 



Running Time Analysis (cont.) 

 Analysis of the size of the trap. 
 Case 2: All player-1 edges in Gi and Gi-1 identical. 
 Case 2(b): One new player-2 edge (u,v) in the trap. 

 Vertex u is player-2 non-Buechi vertex, i.e., (u,v) has priority in order 
of in-edge 

 Vertex v has at least 2i-1 in-edges before (u,v) in order of in-edges  
⇒ v has at least 2i-1 in-edges from player-2 non-Buechi vertices  
 

 

Gi-1 
Gi 

Trap U 

u 

v 



Running Time Analysis (cont.) 

 Analysis of the size of the trap. 
 Case 2(b): One new player-2 edge (u,v) in the trap. 

 Vertex v has at least 2i-1 in-edges from player-2 non-Buechi vertices  
⇒ By construction of U no player-2 non-Buechi vertex of  V \ U has 
an edge to U 

   ⇒ All in-edge of v belong to U 
   ⇒ U has at least 2i-1 vertices 
   
 

 
 

Gi-1 
Gi 

Trap U 



New Algorithm 

 Time for finding a trap in Gi: O(2i+1n)  
 Key argument: If we find a trap in Gi, then trap of size  

at least 2i-1 is removed from G. 
 Amortized analysis: Charge O(n) to removed vertices. 
 Total time spent until last trap is removed: O(n2) 
 Time spent afterwards: 

 

G1 G2 
G3 

Glog n 

)(2 2log

1
1 nOnn

i
i =∑ =
+



Maximal End-component 
Decomposition 



Maximal End-component Decomposition 

 An end-component U is a set of vertices such that  
 Graph induced by U is strongly connected. 
 If |U| > 1, then for all player-2 vertices in U all out-edges end in 

U. 
 “strongly connected component with no player-2 out-edges” 

 

 
 

 Graph decomposed 
into 1 end-component 
and 1 individual vertex 



Maximal End-component Decomposition 

 An end-component U is a set of vertices such that  
 Graph induced by U is strongly connected. 
 If |U| > 1, then for all player-2 vertices in U all out-edges end in 

U. 
 “strongly connected component with no player-2 out-edges” 

 

  
 

 Graph decomposed 
into 5 individual vertices 
(no end-component) 



Maximal End-component Decomposition 

 Application: Typically used to analyze Markov Decision Processes, 
where player 2 is the probabilistic player. 

 
 

 Maximal end-component (MEC) decomposition: 
 Classical algorithm: O(nm) [CY95, deAlfaro97] 

 Same algorithm as above but instead of traps search for 
strongly connected components with no out-edge 
containing no vertex of B. 
 O(n2) 

 Second algorithm: O(m1.5)  
 

 

 



Conclusion 

 Buechi games and MEC decomposition:  
 A core algorithmic problem in verification with long-

standing O(nm) barrier. 
 We present a simple O(n2) time algorithm for the 

problem, also for mec decomposition. 
 For mec decomposition also O(m1.5) algorithm that 

combined gives a worst case O(mn2/3) algorithm. 
 

 Open questions:  
 O(mn1-δ) or O(nm1-δ) for Buechi games, for some δ > 

0 
 O(mn1/2) algorithm for mec decomposition. 

 



Generalization of Buechi Games 

 Parity games: 
 Sub-exponential time deterministic [Jurdzindski, Patterson, Zwick 

’06], pseudo-polynomial time [Zwick, Paterson ‘96] 
 No polynomial-time algorithm known 
 NP ∩ Co-NP 

 Mean-payoff games: 
 Sub-exponential time randomized algorithm [Björklund, Vorobyov 

‘07], pseudo-polynomial time [Pisaruk ‘99] 
 No polynomial-time algorithm known 

 Polynomial-time algorithm for restricted weight-structures 
[Chatterjee, H, Krinninger, Nanongkai ‘12]  

 NP ∩ Co-NP 

 Open question: Are they solvable in polynomial time? 
 

 



Thank you ! 

 

Questions ? 
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