The past 100 days...

- A new Galois connection for classifying the complexity of a wide range of discrete optimisation problems...

- A new dichotomy for 3-valued problems identifying infinitely many distinct tractable cases...

 Skew Bisubmodularity and Valued CSPs, Anna Huber, Andrei Krokhin, and Robert Powell to appear in SODA 2013 (accepted on Sep 15, 2012)

- A complete classification of finite-valued cases...

“Basic” Problems

- 3D-Matching
- 3-SAT
- Vertex Cover
- Clique
- Colouring
- Hamiltonian Circuit
- Partition

CSP
A General Framework

Variables \bullet = Talks to be scheduled at conference
Transmitters to be assigned frequencies
Amino acids to be located in space
Circuit components to be placed on a chip
A General Framework

Constraints $\bigcirc = $ All invited talks on different days
No interference between near transmitters
$x + y + z > 0$
At least $1\mu m$ between wires
Outline

• Constraint languages
• Complexity of different languages
• Expressive power
• Algebraic properties of constraint languages
• Generalizing – the bigger picture
• Valued constraint languages
Constraint Languages
Half of the Story...

- This picture illustrates the constraint *scopes*
- The set of scopes is sometimes called the *constraint hypergraph*, or the *scheme*
- A lot of work has been done on CSPs with restricted schemes (such as trees)
...The Other Half

- The picture now emphasises the constraint relations

What do we call the set of constraint relations?
Definition: A constraint language is a set of relations over some fixed set D.

For every constraint language, \(L \), we have a corresponding class of problems, \(\text{CSP}(L) \)...
Definition of CSP(L)

Definition 1a:

- An *instance* of CSP(L) is a 3-tuple \((V, D, C)\), where
 - \(V\) is a set of variables
 - \(D\) is a single domain of possible values
 - \(C\) is a set of constraints

 Each constraint in \(C\) is a pair \((s, R)\) where
 - \(s\) is a *list of variables* defining the scope
 - \(R\) is a *relation* from \(L\) defining the allowed combinations of values

- The *question* is whether each variable in \(V\) can be assigned a value in \(D\) so that all constraints in \(C\) are satisfied
Examples

<table>
<thead>
<tr>
<th>L</th>
<th>CSP(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disequality Relation</td>
<td>Graph Colouring Problem</td>
</tr>
<tr>
<td>${ \neq }$</td>
<td></td>
</tr>
<tr>
<td>Clauses</td>
<td>Satisfiability</td>
</tr>
<tr>
<td>Affine relations</td>
<td>Simultaneous Linear Equations</td>
</tr>
<tr>
<td>Temporal Relations</td>
<td>Simple Temporal Problems</td>
</tr>
<tr>
<td>${ (x,y) \mid x-y\leq t }$</td>
<td></td>
</tr>
</tbody>
</table>

NP-complete

Tractable
The Lattice of Languages

- NP-complete
- Disequality
- Affine relations
- Tractable
- \emptyset

R_D
Complexity – Boolean Case

Schaefer (1978) showed that when L is a set of Boolean relations, $CSP(L)$ is tractable in exactly the following 6 cases:

- Every R in L contains $(0,0,...,0)$
- Every R in L is definable by a CNF formula in which each conjunct has at most one un-negated literal (Horn clauses)
- Every R in L is definable by a CNF formula in which each conjunct has at most 2 literals
- Every R in L contains $(1,1,...,1)$
- Every R in L is definable by a CNF formula in which each conjunct has at most one negated literal (dual Horn)
- Every R in L holds over an affine set in $GF(2)$

Boolean Languages

- $R_{\{0,1\}}$
- NP-complete
- Not-all-equal SAT
- Tractable
- 0…0 relations
- 1…1 relations
- Horn relations
- Dual Horn relations
- 2-decomposable relations
- Affine relations
Expressive Power
Expressive Power

- The idea of Schaefer’s proof was to consider what relations are “expressible” using relations from L.
- This makes use of the fact that new constraints can be derived from the combined effect of specified constraints.
Expressive Power

Definition 2:
The “expressive power” of a constraint language L, denoted $\langle L \rangle$, is defined to be the set of relations that can be expressed using:

- Relations in L
- Relational join operations
- Projection onto some subset of variables
Expressive Power and Reduction

Theorem (Jeavons 98): For any constraint language L, and any finite constraint language L', if $L' \subseteq \langle L \rangle$ then $\text{CSP}(L')$ is polynomial-time reducible to $\text{CSP}(L)$.
Expressive Power and Reduction

Theorem (Jeavons 98): For any constraint language L, and any finite constraint language L', if $L' \subseteq \langle L \rangle$ then $\text{CSP}(L')$ is polynomial-time reducible to $\text{CSP}(L)$.

Corollary: We can add any of the relations in $\langle L \rangle$ to L without changing the complexity of $\text{CSP}(L)$.

Corollary: If $\langle L_1 \rangle = \langle L_2 \rangle$ then $\text{CSP}(L_1)$ is polynomial-time equivalent to $\text{CSP}(L_2)$.
Expressive Power and Reduction

Theorem (Jeavons 98): For any constraint language \mathbf{L}, and any finite constraint language \mathbf{L}', if $\mathbf{L}' \subseteq \langle \mathbf{L} \rangle$ then $\text{CSP}(\mathbf{L}')$ is polynomial-time reducible to $\text{CSP}(\mathbf{L})$

$\langle \mathbf{L} \rangle$ is more important than \mathbf{L}
Calculating $\langle L \rangle$

- A relation is in $\langle L \rangle$ if and only if it can be expressed *somehow* using the relations in L.
- For a given relation, how can we decide if it can or cannot be expressed in L?
Algebraic Properties
Algebraic Invariance

Definition: A relation R is *invariant* under a k-ary operation ϕ, if, for any tuples $a_1, a_2, \ldots, a_k \in R$, the tuple obtained by applying ϕ co-ordinatewise is a member of R.

If R is invariant under ϕ, then ϕ is called a *polymorphism* of R.
We say that this relation R has the polymorphism Maximum.

\[\forall s, t \quad \text{if } s \text{ and } t \text{ are in } R, \text{ then } \text{Max}(s, t) \text{ is in } R \]
Sets of relations

Compute the polymorphisms of L

$\text{Inv}(\text{Pol}(L)) = \langle L \rangle$

Compute the invariant relations of $\text{Pol}(L)$

\emptyset
Theorem (Geiger 68): For any constraint language L, over a finite domain, $\langle L \rangle = \text{Inv}(\text{Pol}(L))$

and independently by Bodnarchuk, Kaluzhnin, Kotov and Romov

Corollary: For any finite constraint language L, over a finite domain, the complexity of $\text{CSP}(L)$ is determined by $\text{Pol}(L)$
Sets of relations

Sets of operations

\[\text{Inv}(\text{Pol}(L)) = \langle L \rangle \]

\[\emptyset \]

\[\text{Pol}(L) \]

\[R_D \]

\[L \]
Clones

Definition: A *relational clone* is a set of relations which is closed under relational join and projection.

Every relational clone is of the form \(\text{Inv}(\Phi) \) for some \(\Phi \).

Definition: A *clone* is a set of operations which is closed under composition and contains all projection operations.

Every clone is of the form \(\text{Pol}(L) \) for some \(L \).
Boolean Operations

Relational Clones
- Not-all-equal satisfiability
- Schaefers 6 maximal tractable classes

Clones of Operations
- Constant 0
- Constant 1
- Max
- Min
- Majority
- Minority

Permutation

Schaefers 6 maximal tractable classes

- Not
- All
- Equal
Boolean Operations

Relational Clones

Boolean Relational Clones

Dichotomy Theorem for Boolean CSP

Post's Lattice

Clones of Operations
Islands of tractability

- In the Boolean case this is a complete description (2 constants, 1 majority, 2 semilattice, 1 affine)
- For larger domains this is not a complete description…
Towards a Dichotomy

By investigating the *algebras* associated with the clone of polymorphisms it may be possible to identify *precisely* which polymorphisms lead to tractability on any finite domain…
Towards a Dichotomy

Theorem: A constraint language over a finite domain that includes all constants is tractable if and only if it has a polymorphism f such that

$$f(x, x, \ldots, x, y) = f(x, \ldots x, y, x) = \ldots = f(y, x, \ldots x)$$
Towards a Dichotomy

Conjecture: A constraint language over a finite domain that includes all constants is tractable if and only if it has a polymorphism f such that

$$f(x,x,\ldots,x,y) = f(x,\ldots x,y,x) = \ldots = f(y,x,\ldots x)$$
Generalizing the CSP
A Bigger Picture

Travelling Salesperson

Scheduling

Min-
Cut

Max-
SAT

Max-
Flow

Linear Programming

Max-
Cut

ILP

Max-
Clique

3D-
Matching

3-SAT

Colouring

Vertex Cover

Clique

Hamiltonian Circuit

Partition

CSP

x-Clique

3-SAT
Fragmentation

- COP
- Max-CSP
- Max-SAT
- WCSP
- FCSP
- HCLP
- Pseudo-Boolean Optimisation
- Bayesian Networks
- Random Markov Fields
- Integer Programming
- ...
Definition of CSP(L)

• An instance of CSP(L) is a 3-tuple \((V,D,C)\), where
 – \(V\) is a set of variables
 – \(D\) is a single domain of possible values
 – \(C\) is a set of constraints

Each constraint in \(C\) is a pair \((s,R)\) where
 • \(s\) is a list of variables defining the scope
 • \(R\) is a relation from \(L\) defining the allowed combinations of values
Definition of VCSP(L)

• An *instance* of VCSP(L) is a 4-tuple \((V, D, C, \Omega)\), where
 – \(V\) is a set of variables
 – \(D\) is a single domain of possible values
 – \(C\) is a set of constraints
 – \(\Omega\) is a set of *costs*

Each constraint in \(C\) is a pair \((s, \phi)\) where
 • \(s\) is a list of variables defining the scope
 • \(\phi\) is a function from \(L\) defining the cost associated with each combination of values
Boolean constraints

\(x + y + z = 0 \)

\[
(x \lor y \lor \neg z) \land (x \lor \neg y \lor z) \land \\
(\neg x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z)
\]

SAT

\[
\begin{array}{ccc|c}
 x & y & z & \text{valued} \\
 \hline
 0 & 0 & 0 & \checkmark \\
 0 & 0 & 1 & \times \\
 0 & 1 & 0 & \times \\
 0 & 1 & 1 & \checkmark \\
 1 & 0 & 0 & \times \\
 1 & 0 & 1 & \checkmark \\
 1 & 1 & 0 & \checkmark \\
 1 & 1 & 1 & \times \\
\end{array}
\]
Valued Boolean constraints

SAT

$x + y + z = 0$

$(x \lor y \lor \neg z) \land (x \lor \neg y \lor z) \land (\neg x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z)$

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>✓</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>✓</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>X</td>
</tr>
</tbody>
</table>
Valued Boolean constraints

\[x + y + z = 0 \]

\[(x \lor y \lor \neg z) \land (x \lor \neg y \lor z) \land (\neg x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \]

\[
\begin{array}{ccc|c}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 \\
\end{array}
\]
Valued Boolean constraints

VSAT

- Very general discrete optimization problem
- NP-hard
Valued constraints

VCSP

- Very general discrete optimization problem
- NP-hard
A Bigger Picture

VCSP

Travelling Salesperson
Linear Programming
Max-Clique
Max-SAT
Max-Cut
Scheduling
MinMax
Max-Flow
Min-Cut
3D-Matching
Hamiltonian Circuit
Partition
Colouring
Vertex Cover
Clique
3-SAT
Valued Constraint Languages
Valued Constraint Languages

Definition: A *valued constraint language* is a set of functions from \(D^n \) to \(\Omega \), for some fixed finite set \(D \) and some set of costs \(\Omega \).

For every valued constraint language, \(L \), we have a corresponding class of problems, VCSP(\(L \)).
Expressive Power

• If we can combine the relations R_1, R_2, \ldots, R_k to obtain a derived constraint relation R_0, then we say that R_0 can be *expressed* using R_1, R_2, \ldots, R_k
Expressive Power

- If we can combine the functions $\varphi_1, \varphi_2, \ldots, \varphi_k$ to obtain a derived cost function φ_0, then we say that φ_0 can be expressed using $\varphi_1, \varphi_2, \ldots, \varphi_k$.
Expressive Power

Definition:

The “expressive power” of a valued constraint language L, denoted $\langle L \rangle$, is defined to be the set of functions that can be obtained from functions in L using

– Summation
– Minimisation
Closure

Definition:
The "closure" of a valued constraint language L, denoted $\langle\langle L \rangle\rangle$, is defined to be the set of functions that can be obtained from functions in L using

- Summation
- Minimisation
- Multiplication by a non-negative rational
- Addition of a constant
Closure and Reduction

Theorem: (Cohen, Cooper, J. 06) For any valued constraint languages L, L', if L' finite, and $L' \subseteq \langle \langle L \rangle \rangle$, then VCSP($L'$) is polynomial-time reducible to VCSP(L).

Corollary: A valued constraint language L is (locally) tractable if and only if $\langle \langle L \rangle \rangle$ is tractable; similarly, L is NP-hard if and only if $\langle \langle L \rangle \rangle$ is NP-hard.
Algebra?
Pol and Inv

Sets of relations

Compute the polymorphisms of L

$\text{Inv}(\text{Pol}(L)) = \langle L \rangle$

Compute the invariant relations of Pol(L)

\varnothing

Pol(L)
We say that this relation R has the polymorphism Maximum if s and t are in R, then $\text{Max}(s, t)$ is in R.

$
\forall s, t \quad \text{if } s \text{ and } t \text{ are in } R, \text{ then } \text{Max}(s, t) \text{ is in } R$

Generalizing Pol

∀s,t Cost(Max(s,t)) ≤ Cost(s) + Cost(t)
Generalizing Pol

\[\forall s,t \quad \text{Cost}(\text{Min}(s,t)) + \text{Cost}(\text{Max}(s,t)) \leq \text{Cost}(s) + \text{Cost}(t) \]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Minimum + Maximum = 3

\[+ = 6 \]
Generalizing Pol

\[\forall s, t \quad \text{Cost}(\text{Min}(s, t)) + \text{Cost}(\text{Max}(s, t)) \leq \text{Cost}(s) + \text{Cost}(t) \]

We say that the cost function has the multimorphism \([\text{Min}, \text{Max}]\)

(any cost function with this particular multimorphism is called \textit{submodular})

If all cost functions are submodular
the problem is tractable
Tractable Cases

Any set of Boolean cost functions which all have one of these eight multimorphisms, is tractable:

1) [Min,Max]
2) [Max,Max]
3) [Min,Min]
4) [Majority,Majority,Majority]
5) [Minority,Minority,Minority]
6) [Majority,Majority,Minority]
7) [Constant 0]
8) [Constant 1]

Note: These are tractable cases for all finite domains

(see Cohen, Cooper, Jeavons, Krokhin, “Soft Constraints: Complexity and Multimorphisms” CP2003, pp.244-258)
Boolean Dichotomy Theorem

Any set of Boolean cost functions which all have one of these eight multimorphisms, is tractable:

1) [Min,Max]
2) [Max,Max]
3) [Min,Min]
4) [Majority,Majority,Majority]
5) [Minority,Minority,Minority]
6) [Majority,Majority,Minority]
7) [Constant 0]
8) [Constant 1]

In all other Boolean cases the cost functions have **no** significant common multimorphisms and the problem is **NP-hard**.

(Cohen, Cooper, J. CP’04)
Special Cases

Any set of Boolean cost functions which all have one of these eight multimorphisms, is tractable:

1) [Min,Max]
2) [Max,Max]
3) [Min,Min]
4) [Majority,Majority,Majority]
5) [Minority,Minority,Minority]
6) [Majority,Majority,Minority]
7) [Constant 0]
8) [Constant 1]
Tractable cases of CSP

Constant
Majority
Semilattice
Affine

Constant
Tractable cases of VCSP

Essentially Crisp Languages

\(\langle \text{Mjrty, Mjrty, Mjrty} \rangle \)

\(\langle \text{Max, Max} \rangle \)

\(\langle \text{Mnrt, Mnrt, Mnrt} \rangle \)

\(\langle \text{Constant} \rangle \)

\(\langle \text{Mjrty, Mjrty, Mnrt} \rangle \)

\(\langle \text{Min, Max} \rangle \)
The past 100 days...

• A new Galois connection to characterise the expressive power and complexity of valued constraint languages...

Sets of functions

\(\Phi_D \)

\(\text{Imp(Mul(L))} \)

\(\langle \langle L \rangle \rangle \)

\(L \)

\(\emptyset \)

\(\text{Mul(L)} \)

\(\text{Multimorphisms of L} \)

\(\text{Compute the functions improved by Mul(L)} \)

\(\text{Compute the multimorphisms of L} \)
Sets of sets of operations:

- Φ_D
- $\langle\langle L \rangle\rangle$
- \emptyset

Sets of functions:

- $\text{Imp} (\text{Mul}(L))$

Mul and Imp

$\text{Mul}(L)$
Sets of weightings w_{Pol} and Imp.

- Compute the weighted polymorphisms $w_{Pol}(L)$.
- Compute the functions improved by $w_{Pol}(L)$.

Sets of functions Φ_D and \emptyset.

- $\langle\langle L \rangle\rangle$.
- L.

Diagram:
- $w_{Pol}(L)$.
- Φ_D.
- \emptyset.
- L.
- $\langle\langle L \rangle\rangle$.

Compute the weighted polymorphisms of L.

Sets of weightings.
Generalizing Mul

∀s,t Cost(Min(s,t)) + Cost(Max(s,t)) ≤ Cost(s) + Cost(t)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Project₁ + Project₂ = 6

Minimum + Maximum = 3
Generalizing Mul

A table with columns labeled x, y, and z, and rows containing binary values. The table is used to illustrate different operations:

- **Project P_1**: The result is 6.
- **Project P_2**: The result is -3.
- **Minimum**: The result is 3.
- **Maximum**: The result is 5.

The operations are performed on the rows of the table, with the results shaded in blue and the operations in red.
Generalizing Mul

We now have a function that weights the operations

x	y	z	
0	0	0	0
0	0	1	1
0	1	0	7
0	1	1	1
1	0	0	5
1	0	1	3
1	1	0	∞
1	1	1	0

0 0 1 1
1 0 0 5
0 0 0 0
1 0 1 3

-1 Project₁
-1 Project₂
+1 Minimum
+1 Maximum
Weightings

Definition: A k-ary \textit{weighting}, ω, is a (partial) \textit{function} from the k-ary operations on a set D to rational weights, such that:

1. Only projections can have negative weights
2. The sum of all the weights is 0

-1 \text{ \textbf{Project}_1}
-1 \text{ \textbf{Project}_2}
+1 \text{ \textbf{Minimum}}
+1 \text{ \textbf{Maximum}}
Weighted Polymorphism

Definition: A k-ary weighting, ω, is a *weighted polymorphism* of a cost function ϕ, if, for all x_1, x_2, \ldots, x_k, $\sum_f \omega(f) \phi(f(x_1, x_2, \ldots, x_k)) \leq 0$
Sets of weightings $\{w_{\text{Pol}} \}$ and $\{\text{Imp} \}$

Sets of functions $w_{\text{Pol}}(L)$ and $\text{Imp}(w_{\text{Pol}}(L))$

Compute the weighted polymorphisms of L

$\langle \langle L \rangle \rangle$

Φ_D

Compute the functions improved by $w_{\text{Pol}}(L)$

\emptyset

$w_{\text{Pol}}(L)$
Sets of weightings \(w_{Pol} \) and \(\Phi \)

Compute the weighted polymorphisms of \(\text{Imp}(W) \)

Sets of functions

Compute the functions improved by \(W \)

\(\text{Imp}(W) \)

\(\Phi_D \)

\(\emptyset \)

\(\text{wPol} \left(\text{Imp}(W) \right) \)

\(W \)
Weighted Clones

Definition: A set of weightings of a clone \(C\) is a *weighted clone* if it is closed under:

1. **Addition:** \(\omega_1 + \omega_2\)
2. **Scaling:** \(c\omega\) (\(c \in \mathbb{Q}^{\geq 0}\))
3. **Superposition:** \(\omega[g_1, \ldots g_k]\)

where \(\omega[g_1, \ldots g_k](f) = \sum \omega(f')\) \(\{ f' \mid f = f'[g_1, \ldots g_k] \}\)
Sets of weightings w_{Pol} and Imp.

Sets of functions $w_{\text{Pol}}(\text{Imp}(W))$.

$\text{Imp}(W) = w_{\text{Clone}}(W)$.
Minimal Weighted Clones

Definition: A non-zero weighted clone is minimal if every non-zero weighting it contains is a generator.

Definition: A weighted clone is zero-valued if every weighting in it is zero-valued.
Minimal Weighted Clones

Theorem: Any non-zero weighted clone W must contain a weighting that assigns positive weight to either:

1. A set of unary operations that are not projections; or
2. A set of binary idempotent operations that are not projections; or
3. A set of ternary sharp operations (majority operations, minority operations, Pixley operations or semiprojections); or
4. A set of k-ary semiprojections (for some $k > 3$).

Corollary: Any non-zero weighted clone W on the Boolean domain must contain a weighting ω that assigns positive weight to either:

1. Exactly one of the unary operations constant 0, constant 1, or inversion;
2. Exactly one of the binary operations min and max, or both of them equally;
3. Exactly one of the ternary operations Majority and Minority, or both of them with $\omega(\text{Majority}) = 2\omega(\text{Minority})$.
The past 100 days…

• A new Galois connection to characterise the expressive power and complexity of valued constraint languages using *weighted polymorphisms*…

• A new dichotomy for *finite-valued* constraint languages on a 3-element domain, showing there are infinitely many distinct tractable cases (all characterised by *binary* weighted polymorphisms) …

 Skew Bisubmodularity and Valued CSPs, Anna Huber, Andrei Krokhin, and Robert Powell to appear in SODA 2013 (accepted on Sep 15, 2012)

• A complete characterisation of tractable finite-valued constraint languages over *arbitrary finite domains*…

Summary

What do we get from the CSP/VCSP model?

• A unified approach to combinatorial search and optimisation problems
• An understanding of tractable cases that could be exploited by general constraint solving tools
• A link between efficient algorithms and structural properties/polymorphisms
• Generic hardness proofs without reductions
• A bridge into a rich algebraic theory
• New mathematical approach to the whole problem space…