
Lower bounds for Streaming Problems

Joint work with

Markus Jalsenius and Benjamin Sach

Raphaël Clifford

Lower bounds for Streaming Problems

Cell-probe model

︸ ︷︷ ︸
w bits

0
1
2
3
4
5...

Cells

Cell probes

Read

Write

The CPU does not remember
anything in between
operations.

Cell-probe model

︸ ︷︷ ︸
w bits

0
1
2
3
4
5...

Cells

Cell probes

Read

Write

The CPU does not remember
anything in between
operations.

The CPU has unlimited
computational power.

Data Structure Lower Bounds

Yao - FOCS ’78
Predecessor (static)
• Ajtai - Combinatorica ’88 (incorrect) (Communication complexity)
• Miltersen - STOC’ 94
• Miltersen, Nisan, Safra, Wigdersen - STOC ’95
• Beame, Fich - STOC ’99
• Sen - ICALP ’01

Dynamic problems (partial sums, union find)
• Fredman, Saks - STOC ’89 (Chronogram technique)
• Ben-Amram, Galil - FOCS ’91
• Miltersen, Subramanian, Vitter, Tamassia - TCS ’94
• Husfeldt, Rauhe, Skyum - SWAT ’96 (planar connectivity)
• Fredman, Henzinger - Algorithmica ’98 (non-determinism)
• Alstrup, Husfeldt, Rauhe - FOCS ’98 (marked ancestor)
• Alstrup, Husfeldt, Rauhe - SODA ’01 (2D NN)
• Alstrup, Ben-Amram, Rauhe - STOC ’99 (union-find)

Data Structure Lower Bounds

Yao - FOCS ’78
Predecessor (static)
• Ajtai - Combinatorica ’88 (incorrect) (Communication complexity)
• Miltersen - STOC’ 94
• Miltersen, Nisan, Safra, Wigdersen - STOC ’95
• Beame, Fich - STOC ’99
• Sen - ICALP ’01

Dynamic problems (partial sums, union find)
• Fredman, Saks - STOC ’89 (Chronogram technique)
• Ben-Amram, Galil - FOCS ’91
• Miltersen, Subramanian, Vitter, Tamassia - TCS ’94
• Husfeldt, Rauhe, Skyum - SWAT ’96 (planar connectivity)
• Fredman, Henzinger - Algorithmica ’98 (non-determinism)
• Alstrup, Husfeldt, Rauhe - FOCS ’98 (marked ancestor)
• Alstrup, Husfeldt, Rauhe - SODA ’01 (2D NN)
• Alstrup, Ben-Amram, Rauhe - STOC ’99 (union-find)

Best lower bound

Ω

(
log n

log log n

)

Data Structure Lower Bounds

Yao - FOCS ’78
Predecessor (static)
• Ajtai - Combinatorica ’88 (incorrect) (Communication complexity)
• Miltersen - STOC’ 94
• Miltersen, Nisan, Safra, Wigdersen - STOC ’95
• Beame, Fich - STOC ’99
• Sen - ICALP ’01

Dynamic problems (partial sums, union find)
• Fredman, Saks - STOC ’89 (Chronogram technique)
• Ben-Amram, Galil - FOCS ’91
• Miltersen, Subramanian, Vitter, Tamassia - TCS ’94
• Husfeldt, Rauhe, Skyum - SWAT ’96 (planar connectivity)
• Fredman, Henzinger - Algorithmica ’98 (non-determinism)
• Alstrup, Husfeldt, Rauhe - FOCS ’98 (marked ancestor)
• Alstrup, Husfeldt, Rauhe - SODA ’01 (2D NN)
• Alstrup, Ben-Amram, Rauhe - STOC ’99 (union-find)

First Ω (log n) lower bound using information
transfer.

M. Pǎtraşcu and E. Demaine
Tight bounds for the partial-sums problem
SODA 2004

Convolution

x1 x2 x3 x4 x5 x6 x7 ?

︸ ︷︷ ︸
n

v0

x0

v1 v2 v4v3 v5 v6 v7

Stream of numbers from [q]

Fixed vector
V ∈ [q]n

V ·(last n digits of stream) =
n−1∑
i=0

vix(i+ leftmost aligned index)

Output dot product (modulo q):

Convolution

x8 ?

︸ ︷︷ ︸
n

v0 v1 v2 v4v3 v5 v6 v7

Stream of numbers from [q]

x1 x2 x3 x4 x5 x6 x7x0

Fixed vector
V ∈ [q]n

V ·(last n digits of stream) =
n−1∑
i=0

vix(i+ leftmost aligned index)

Output dot product (modulo q):

Convolution

x9 ?

︸ ︷︷ ︸
n

v0 v1 v2 v4v3 v5 v6 v7

Stream of numbers from [q]

x8x1 x2 x3 x4 x5 x6 x7x0

Fixed vector
V ∈ [q]n

V ·(last n digits of stream) =
n−1∑
i=0

vix(i+ leftmost aligned index)

Output dot product (modulo q):

Convolution

x10 ?

︸ ︷︷ ︸
n

v0 v1 v2 v4v3 v5 v6 v7

Stream of numbers from [q]

x9x8x1 x2 x3 x4 x5 x6 x7x0

Fixed vector
V ∈ [q]n

V ·(last n digits of stream) =
n−1∑
i=0

vix(i+ leftmost aligned index)

Output dot product (modulo q):

Convolution

x11 ?

︸ ︷︷ ︸
n

v0 v1 v2 v4v3 v5 v6 v7

Stream of numbers from [q]

x10x9x8x1 x2 x3 x4 x5 x6 x7x0

Fixed vector
V ∈ [q]n

V ·(last n digits of stream) =
n−1∑
i=0

vix(i+ leftmost aligned index)

Output dot product (modulo q):

Convolution

x12 ?

︸ ︷︷ ︸
n

v0 v1 v2 v4v3 v5 v6 v7

Stream of numbers from [q]

x11x10x9x8x1 x2 x3 x4 x5 x6 x7x0

Fixed vector
V ∈ [q]n

V ·(last n digits of stream) =
n−1∑
i=0

vix(i+ leftmost aligned index)

Output dot product (modulo q):

Convolution

x13 ?

︸ ︷︷ ︸
n

v0 v1 v2 v4v3 v5 v6 v7

Stream of numbers from [q]

x12x11x10x9x8x1 x2 x3 x4 x5 x6 x7

Fixed vector
V ∈ [q]n

V ·(last n digits of stream) =
n−1∑
i=0

vix(i+ leftmost aligned index)

Output dot product (modulo q):

Convolution

x13 ?

︸ ︷︷ ︸
n

v0 v1 v2 v4v3 v5 v6 v7

Stream of numbers from [q]

x12x11x10x9x8x1 x2 x3 x4 x5 x6 x7

Fixed vector
V ∈ [q]n

V ·(last n digits of stream) =
n−1∑
i=0

vix(i+ leftmost aligned index)

Output dot product (modulo q):

Lower bound: Ω

(
δ

w
log n

)
δ = log q, word size w.
C., Jalsenius. Lower Bounds for Online Integer Multiplication and
Convolution in the Cell-Probe Mode. ICALP 2011

Previous bounds

M. J. Fischer and L. J. Stockmeyer
Fast on-line integer multiplication
STOC ’73

C., K. Efremenko, B. Porat and E. Porat
A black box for online approximate pattern matching
Information and Computation 209(4):731–736, 2011

• O(log2 n) time per arriving symbol (pair)

Previous bounds

M. J. Fischer and L. J. Stockmeyer
Fast on-line integer multiplication
STOC ’73

C., K. Efremenko, B. Porat and E. Porat
A black box for online approximate pattern matching
Information and Computation 209(4):731–736, 2011

• O(log2 n) time per arriving symbol (pair)

Offline cell probe complexity is linear!
⇒

online upper bound of O(log n)

Previous bounds

M. J. Fischer and L. J. Stockmeyer
Fast on-line integer multiplication
STOC ’73

C., K. Efremenko, B. Porat and E. Porat
A black box for online approximate pattern matching
Information and Computation 209(4):731–736, 2011

• O(log2 n) time per arriving symbol (pair)

Better online lower bound
⇒

super linear lower bound for
offline convolution and multiplication

Yao’s minimax principle

A lower bound on the expected running time for

implies that the same lower bound holds for

Algorithm Input

Worst case

Algorithm Input

Deterministic Random

Randomised

Yao’s minimax principle

A lower bound on the expected running time for

implies that the same lower bound holds for

Input

Worst case

Algorithm Input

Deterministic Random

Algorithm

Deterministic

Information transfer

Unknown value
chosen uniformly
at random from [q]

?

Fixed value Memory cells

Information transfer

Unknown value
chosen uniformly
at random from [q]

?

Fixed value Memory cells

Information transfer

Unknown value
chosen uniformly
at random from [q]

?

Fixed value Memory cells

Information transfer

Unknown value
chosen uniformly
at random from [q]

?

Fixed value Memory cells

Information transfer

Unknown value
chosen uniformly
at random from [q]

?

Fixed value Memory cells

Information transfer

Unknown value
chosen uniformly
at random from [q]

?

Fixed value Memory cells

Information transfer

Unknown value
chosen uniformly
at random from [q]

?

?

Fixed value Memory cells

Cell written during
the -inputs

t

?

Information transfer

Unknown value
chosen uniformly
at random from [q]

??

?

Fixed value Memory cells

Cell written during
the -inputs

t

?

Information transfer

Unknown value
chosen uniformly
at random from [q]

???

?

Fixed value Memory cells

Cell written during
the -inputs

t

?

Information transfer

Unknown value
chosen uniformly
at random from [q]

????

?

Fixed value Memory cells

Cell written during
the -inputs

`︷ ︸︸ ︷t

?

Information transfer

Cells read during the next ` inputs

Unknown value
chosen uniformly
at random from [q]

?????

?

Fixed value Memory cells

Cell written during
the -inputs

`︷ ︸︸ ︷t

?

Information transfer

Cells read during the next ` inputs

Unknown value
chosen uniformly
at random from [q]

??????

?

Fixed value Memory cells

Cell written during
the -inputs

`︷ ︸︸ ︷t

?

Information transfer

Cells read during the next ` inputs

Unknown value
chosen uniformly
at random from [q]

?????? ?

?

Fixed value Memory cells

Cell written during
the -inputs

`︷ ︸︸ ︷t

?

Information transfer

Cells read during the next ` inputs

Unknown value
chosen uniformly
at random from [q]

??????? ?

?

Fixed value Memory cells

Cell written during
the -inputs

`︷ ︸︸ ︷t

?

`︷ ︸︸ ︷

Information transfer

Cells read during the next ` inputs

Unknown value
chosen uniformly
at random from [q]

??????? ?

?

Fixed value Memory cells

Cell written during
the -inputs

Information
transfer
IT (t, `)

Not including cells that
were overwritten before
being read

`︷ ︸︸ ︷t

?

`︷ ︸︸ ︷

Information transfer

Cells read during the next ` inputs

Unknown value
chosen uniformly
at random from [q]

??????? ?

?

Fixed value Memory cells

Information
transfer
IT (t, `)

Not including cells that
were overwritten before
being read

The cells in IT (t, `)
provide sufficient
information in order to give
correct output during

`︷ ︸︸ ︷t
`︷ ︸︸ ︷

Information transfer

Unknown value
chosen uniformly
at random from [q]

??????? ?

?

Fixed value Memory cells

Information
transfer
IT (t, `)

Not including cells that
were overwritten before
being read

The conditional entropy

H(the outputs during | all fixed)

6 w + 2w · E [|IT (t, `)| | all fixed]

w bits per cell

`︷ ︸︸ ︷t
`︷ ︸︸ ︷

Information transfer

Unknown value
chosen uniformly
at random from [q]

??????? ?

?

Fixed value

The conditional entropy

H(the outputs during | all fixed)

6 w + 2w · E [|IT (t, `)| | all fixed]

w bits per cell

Cell Address Contents

︸ ︷︷ ︸
w bits

︸ ︷︷ ︸
w bits

34123|IT (t, `)|

92540

00124

01882

76112

88819

`︷ ︸︸ ︷t
`︷ ︸︸ ︷

w bits to encode
|IT (t, `)|

Information transfer

Unknown value
chosen uniformly
at random from [q]

??????? ?

?

Fixed value

The conditional entropy

H(the outputs during | all fixed)

6 w + 2w · E [|IT (t, `)| | all fixed]

w bits per cell

Cell Address Contents

︸ ︷︷ ︸
w bits

︸ ︷︷ ︸
w bits

34123|IT (t, `)|

92540

00124

01882

76112

88819

`︷ ︸︸ ︷t
`︷ ︸︸ ︷

w bits to encode
|IT (t, `)|

00000 00000

Information transfer

??????? ?

`︷ ︸︸ ︷t
`︷ ︸︸ ︷

How much information about do we need

in order to give correct outputs during ?

??? ?

????

Information transfer

??????? ?

`︷ ︸︸ ︷t
`︷ ︸︸ ︷

How much information about do we need

in order to give correct outputs during ?

??? ?

????

Depends on the fixed vector

Information transfer

??????? ?

`︷ ︸︸ ︷t
`︷ ︸︸ ︷

Output is always 0 (no information)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Information transfer

??????? ?

`︷ ︸︸ ︷t
`︷ ︸︸ ︷

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1︸ ︷︷ ︸
Contributes to the dot product
with the same value at each
alignment
(δ = log q bits of information)

Information transfer

??????? ?

`︷ ︸︸ ︷t
`︷ ︸︸ ︷

0110100010000000100000

4816

if the position is a power of 21

12

Information transfer

0110100010000000100000

4816

if the position is a power of 21

12

??? ? ??? ?

`=8︷ ︸︸ ︷

Information transfer

0110100010000000100000

4816

if the position is a power of 21

12

??? ? ??? ?

`=8︷ ︸︸ ︷

Information transfer

0110100010000000100000

4816

if the position is a power of 21

12

??? ? ??? ?

`=8︷ ︸︸ ︷

Information transfer

0110100010000000100000

4816

if the position is a power of 21

12

??? ? ??? ?

`=8︷ ︸︸ ︷

Information transfer

0110100010000000100000

4816

if the position is a power of 21

12

??? ? ??? ?

`=8︷ ︸︸ ︷ `/2=4︷ ︸︸ ︷

Information transfer

?

0110100010000000100000

4816

if the position is a power of 21

12

??? ? ?? ?

`=8︷ ︸︸ ︷ `/2=4︷ ︸︸ ︷
R

R = a recovered value
(recall that is chosen uniformly at random
from [q], hence contributes with δ = log q bits
to the entropy)

?

Information transfer

0110100010000000100000

4816

if the position is a power of 21

12

R = a recovered value
(recall that is chosen uniformly at random
from [q], hence contributes with δ = log q bits
to the entropy)

???? ? ?? ?

`=8︷ ︸︸ ︷ `/2=4︷ ︸︸ ︷
R R

?

Information transfer

0110100010000000100000

4816

if the position is a power of 21

12

R = a recovered value
(recall that is chosen uniformly at random
from [q], hence contributes with δ = log q bits
to the entropy)

???? ? ?? ?

`=8︷ ︸︸ ︷ `/2=4︷ ︸︸ ︷
R R R

?

Information transfer

0110100010000000100000

4816

if the position is a power of 21

12

R = a recovered value
(recall that is chosen uniformly at random
from [q], hence contributes with δ = log q bits
to the entropy)

???? ? ?? ?

`=8︷ ︸︸ ︷
R R R R

?

`=8︷ ︸︸ ︷

Information transfer

0110100010000000100000

4816

if the position is a power of 21

12

R = a recovered value
(recall that is chosen uniformly at random
from [q], hence contributes with δ = log q bits
to the entropy)

???? ? ?? ?

`=8︷ ︸︸ ︷
R R R R

?

`=8︷ ︸︸ ︷

Conclusion: If ` is a power of 2 then we recover `
2

values

Information transfer

0110100010000000100000

4816 12

???? ? ?? ?

`=8︷ ︸︸ ︷
R R R R

`=8︷ ︸︸ ︷

The conditional entropy

H(the outputs during | all fixed) > `
2
δ

`︷ ︸︸ ︷

Conclusion: If ` is a power of 2 then we recover `
2

values

Information transfer

0110100010000000100000

4816 12

???? ? ?? ?

`=8︷ ︸︸ ︷
R R R R

`=8︷ ︸︸ ︷

The conditional entropy

H(the outputs during | all fixed) > `
2
δ

`︷ ︸︸ ︷
The conditional information transfer

E [|IT (t, `)| | all fixed] > δ
4w
`− 1

2

w bits per cell

t

Information transfer

0110100010000000100000

4816 12

???? ? ?? ?

`=8︷ ︸︸ ︷
R R R R

`=8︷ ︸︸ ︷

The conditional information transfer

E [|IT (t, `)| | all fixed] > δ
4w
`− 1

2

w bits per cell

t

Suppose that all values (and) from the stream are
chosen uniformly at random from [q].

?

By linearity of expectation. . .

Information transfer

0110100010000000100000

4816 12

???? ? ?? ?

`=8︷ ︸︸ ︷
R R R R

`=8︷ ︸︸ ︷t

Suppose that all values (and) from the stream are
chosen uniformly at random from [q].

?

By linearity of expectation. . .

The conditional information transfer

E [|IT (t, `)| | all fixed] > δ
4w
`− 1

2

w bits per cell

]

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

0110100010000000︸ ︷︷ ︸
n

Feed the algorithm with n values chosen uniformly at
random from [q].

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

0110100010000000

?

IT (t = 1, ` = 1)

︸ ︷︷ ︸
n

Feed the algorithm with n values chosen uniformly at
random from [q].

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

0110100010000000︸ ︷︷ ︸
n

?

IT (t = 3, ` = 1)

Feed the algorithm with n values chosen uniformly at
random from [q].

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

0110100010000000︸ ︷︷ ︸
n

? ?

IT (t = 1, ` = 2)

Feed the algorithm with n values chosen uniformly at
random from [q].

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

0110100010000000︸ ︷︷ ︸
n

?

IT (t = 5, ` = 1)

Feed the algorithm with n values chosen uniformly at
random from [q].

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

0110100010000000︸ ︷︷ ︸
n

?

IT (t = 7, ` = 1)

Feed the algorithm with n values chosen uniformly at
random from [q].

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

0110100010000000︸ ︷︷ ︸
n

? ?

IT (t = 5, ` = 2)

Feed the algorithm with n values chosen uniformly at
random from [q].

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

0110100010000000︸ ︷︷ ︸
n

? ? ? ?

IT (t = 1, ` = 4)

Feed the algorithm with n values chosen uniformly at
random from [q].

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

0110100010000000︸ ︷︷ ︸
n

? ? ? ? ? ? ? ?

IT (t = 1, ` = 8)

Feed the algorithm with n values chosen uniformly at
random from [q].

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

? ? ? ? ? ? ? ?

IT (t = 1, ` = 8)

Feed the algorithm with n values chosen uniformly at
random from [q].

The number of cell reads during the n inputs is at least∑
internal node v

|IT (tv, `v)|

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

? ? ? ? ? ? ? ?

IT (t = 1, ` = 8)

Feed the algorithm with n values chosen uniformly at
random from [q].

The number of cell reads during the n inputs is at least∑
internal node v

|IT (tv, `v)|

No double counting of a
cell read!

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

Feed the algorithm with n values chosen uniformly at
random from [q].

The number of cell reads during the n inputs is at least∑
internal node v

|IT (tv, `v)|

No double counting of a
cell read!

The expected number of cell reads is at least

E

[∑
internal node v

|IT (tv, `v)|

]
=

∑
internal node v

E [|IT (tv, `v)|]

>
∑

internal node v

δ

4w
`v −

1

2

= Ω

(
δ

w
· n log n

)

Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

Feed the algorithm with n values chosen uniformly at
random from [q].

The number of cell reads during the n inputs is at least∑
internal node v

|IT (tv, `v)|

No double counting of a
cell read!

The expected number of cell reads is at least

E

[∑
internal node v

|IT (tv, `v)|

]
=

∑
internal node v

E [|IT (tv, `v)|]

>
∑

internal node v

δ

4w
`v −

1

2

= Ω

(
δ

w
· n log n

)So. . .
The amortised time lower
bound per output is
Ω
(
δ
w log n

)

Multiplication in a stream

C., Jalsenius
Lower Bounds for Online Integer Multiplication and
Convolution in the Cell-Probe Mode. ICALP 2011

Paterson, Fischer and Meyer
An Improved Overlap Argument for On-Line Multiplication
SIAM-AMS Proceedings, 1974
For binary numbers on

• Multitape Turing machine: Ω(n log n)
• BAM or “bounded activity machine”:

Ω

(
n log n

log log n

)

Time lower bound: Ω
(
δ
w
· n log n

)

Hamming distance

?

︸ ︷︷ ︸
n

s0 s1 s2 s4s3 s5 s6 s7

Stream of symbols from alphabet Σ

x1 x2 x3 x4 x5 x6 x7

Fixed string S

Output Hamming distance between S and last n symbols of
stream.

x13x12x11x10x9x8

Hamming distance

?

︸ ︷︷ ︸
n

s0 s1 s2 s4s3 s5 s6 s7

Stream of symbols from alphabet Σ

x1 x2 x3 x4 x5 x6 x7

Fixed string S

Lower bound: Ω

(
δ

w
log n

)
δ = log |Σ|

C., Jalsenius, Sach. Tight Cell-Probe Bounds for Online Hamming
Distance Computation. SODA 2013

Output Hamming distance between S and last n symbols of
stream.

x13x12x11x10x9x8

The hard instance - a first attempt

0110100010000000100000

4816

if the position is a power of 21

12

R

???? ? ?? ?

`=8︷ ︸︸ ︷
R R R R

`=8︷ ︸︸ ︷

0 = a symbol occurring only in the fixed string

Try a similar approach to before:

We can only infer whether is the symbol 1 or not,
i.e. only one bit of information.

Hamming distance

More difficult than convolution:

• Appear to get at most 1 bit of information per symbol.

• Too large alphabet implies large Hamming distance
(on random input), i.e. low entropy.

• Too small an alphabet implies low entropy per symbol.

• No obvious worst case pattern.

A harder instance

|Σ|
P P· · · 0 · · ·

2i+1

2i

Substring P at every power of two position, and 0 elsewhere
(a symbol that does not occur in the stream).

A harder instance

|Σ|
P P· · · 0 · · ·

2i+1

2i

Substring P at every power of two position, and 0 elsewhere
(a symbol that does not occur in the stream).

Lemma
There is a P s.t. sliding it over all 2|P | length strings T
(over alphabet Σ \ {0}) generates |Σ|Θ(|Σ|) distinct
Hamming array ouputs.

P

T

A harder instance

|Σ|
P P· · · 0 · · ·

2i+1

2i

Substring P at every power of two position, and 0 elsewhere
(a symbol that does not occur in the stream).

Lemma
There is a P s.t. sliding it over all 2|P | length strings T
(over alphabet Σ \ {0}) generates |Σ|Θ(|Σ|) distinct
Hamming array ouputs.

P

T

Great news! Highest entropy we can hope for.

The hard instance

|Σ|
P P· · · 0 · · ·

2i+1

2i

Tj+2Tj+1Tj Tj+3

Text stream

Each Tj is drawn uniformly from a set T of size |Σ|Θ(|Σ|).
Any two strings in T give distinct Hamming outputs with P .

2|Σ|

The hard instance

|Σ|
P P· · · 0 · · ·

2i+1

2i

Tj+2Tj+1Tj Tj+3

Text stream

Each Tj is drawn uniformly from a set T of size |Σ|Θ(|Σ|).
Any two strings in T give distinct Hamming outputs with P .

Recover Θ(`) symbols from a window of ` unknown input
symbols. Entropy:

Θ
(`

2|Σ|
· log |Σ|Θ(|Σ|)

)
= Θ(` · log |Σ|) = Θ(`δ)

δ = log |Σ|

2|Σ|

The hard instance

|Σ|
P P· · · 0 · · ·

2i+1

2i

Tj+2Tj+1Tj Tj+3

Text stream

Each Tj is drawn uniformly from a set T of size |Σ|Θ(|Σ|).
Any two strings in T give distinct Hamming outputs with P .

Recover Θ(`) symbols from a window of ` unknown input
symbols. Entropy:

Θ
(`

2|Σ|
· log |Σ|Θ(|Σ|)

)
= Θ(` · log |Σ|) = Θ(`δ)

δ = log |Σ|

Hence lower bound Ω

(
δ

w
log n

)

2|Σ|

The string P

� �

00 00 00 00 00 00 000000000011 22 23 33 4 5 5 6 66 7 7 88P

µ = |Σ|1/3

3 3 665 7 8������� ��� �� ���� ��� ��� ��� � ����1 2
T

4

� is a symbol that only occurs in T

• Partition P into blocks, each using a unique symbol.

�54 �17 3

Proof overview of the lemma.

The string P

� �

00 00 00 00 00 00 000000000011 22 23 33 4 5 5 6 66 7 7 88P

µ = |Σ|1/3

3 3 665 7 8������� ��� �� ���� ��� ��� ��� � ����1 2
T

4

� is a symbol that only occurs in T

• Partition P into blocks, each using a unique symbol.

�54 �17 3

• Symbols of T will slide over P , and match sums will
correspond to sums of binary vectors.

Proof overview of the lemma.

00 011

00

00

111

111+

320 12

The string P

� �

00 00 00 00 00 00 000000000011 22 23 33 4 5 5 6 66 7 7 88P

µ = |Σ|1/3

3 3 665 7 8������� ��� �� ���� ��� ��� ��� � ����1 2
T

4

� is a symbol that only occurs in T

�54 �17 3

00 011

00

00

111

111+

320 12

• For each window of µ outputs, one can obtain µΘ(µ)

distinct vector sums. (Proof involves cyclic binary codes.)

The string P

� �

00 00 00 00 00 00 000000000011 22 23 33 4 5 5 6 66 7 7 88P

µ = |Σ|1/3

3 3 665 7 8������� ��� �� ���� ��� ��� ��� � ����1 2
T

4

� is a symbol that only occurs in T

�54 �17 3

00 011

00

00

111

111+

320 12

• For each window of µ outputs, one can obtain µΘ(µ)

distinct vector sums. (Proof involves cyclic binary codes.)

• Thus, over the whole of T there are |Σ|Θ(|Σ|) possible
distinct Hamming array ouputs.

What next?

Entirely new techniques appear to be needed again for
seemingly related problems. For example:
• Edit distance (outputs can be encoded in O(n) bits)
• Decision problems (entropy is very low)

What next?

Thank you!

Entirely new techniques appear to be needed again for
seemingly related problems. For example:
• Edit distance (outputs can be encoded in O(n) bits)
• Decision problems (entropy is very low)

	Title
	Cell-probe model
	Yao's minimax principle
	Information transfer
	Information transfer
	Total number of cell reads
	Hamming distance
	Hamming distance
	The hard instance
	The string P
	What next?

