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Data Structure Lower Bounds

Yao - FOCS ’78
Predecessor (static)
• Ajtai - Combinatorica ’88 (incorrect) (Communication complexity)
• Miltersen - STOC’ 94
• Miltersen, Nisan, Safra, Wigdersen - STOC ’95
• Beame, Fich - STOC ’99
• Sen - ICALP ’01

Dynamic problems (partial sums, union find)
• Fredman, Saks - STOC ’89 (Chronogram technique)
• Ben-Amram, Galil - FOCS ’91
• Miltersen, Subramanian, Vitter, Tamassia - TCS ’94
• Husfeldt, Rauhe, Skyum - SWAT ’96 (planar connectivity)
• Fredman, Henzinger - Algorithmica ’98 (non-determinism)
• Alstrup, Husfeldt, Rauhe - FOCS ’98 (marked ancestor)
• Alstrup, Husfeldt, Rauhe - SODA ’01 (2D NN)
• Alstrup, Ben-Amram, Rauhe - STOC ’99 (union-find)
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Yao - FOCS ’78
Predecessor (static)
• Ajtai - Combinatorica ’88 (incorrect) (Communication complexity)
• Miltersen - STOC’ 94
• Miltersen, Nisan, Safra, Wigdersen - STOC ’95
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• Husfeldt, Rauhe, Skyum - SWAT ’96 (planar connectivity)
• Fredman, Henzinger - Algorithmica ’98 (non-determinism)
• Alstrup, Husfeldt, Rauhe - FOCS ’98 (marked ancestor)
• Alstrup, Husfeldt, Rauhe - SODA ’01 (2D NN)
• Alstrup, Ben-Amram, Rauhe - STOC ’99 (union-find)

First Ω (log n) lower bound using information
transfer.

M. Pǎtraşcu and E. Demaine
Tight bounds for the partial-sums problem
SODA 2004
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Convolution

x13 ?

︸ ︷︷ ︸
n

v0 v1 v2 v4v3 v5 v6 v7

Stream of numbers from [q]

x12x11x10x9x8x1 x2 x3 x4 x5 x6 x7

Fixed vector
V ∈ [q]n

V ·(last n digits of stream) =
n−1∑
i=0

vix(i+ leftmost aligned index)

Output dot product (modulo q):

Lower bound: Ω

(
δ

w
log n

)
δ = log q, word size w.
C., Jalsenius. Lower Bounds for Online Integer Multiplication and
Convolution in the Cell-Probe Mode. ICALP 2011
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Fast on-line integer multiplication
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A black box for online approximate pattern matching
Information and Computation 209(4):731–736, 2011

• O(log2 n) time per arriving symbol (pair)
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online upper bound of O(log n)



Previous bounds

M. J. Fischer and L. J. Stockmeyer
Fast on-line integer multiplication
STOC ’73

C., K. Efremenko, B. Porat and E. Porat
A black box for online approximate pattern matching
Information and Computation 209(4):731–736, 2011

• O(log2 n) time per arriving symbol (pair)

Better online lower bound
⇒

super linear lower bound for
offline convolution and multiplication
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Cells read during the next ` inputs

Unknown value
chosen uniformly
at random from [q]

??????? ?

?

Fixed value Memory cells

Information
transfer
IT (t, `)

Not including cells that
were overwritten before
being read

The cells in IT (t, `)
provide sufficient
information in order to give
correct output during

`︷ ︸︸ ︷t
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Unknown value
chosen uniformly
at random from [q]

??????? ?

?

Fixed value

The conditional entropy

H(the outputs during | all fixed)

6 w + 2w · E [|IT (t, `)| | all fixed]

w bits per cell

Cell Address Contents

︸ ︷︷ ︸
w bits

︸ ︷︷ ︸
w bits

34123|IT (t, `)|


92540

00124

01882

76112

88819

`︷ ︸︸ ︷t
`︷ ︸︸ ︷

w bits to encode
|IT (t, `)|

00000 00000
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How much information about do we need

in order to give correct outputs during ?
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Depends on the fixed vector
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Output is always 0 (no information)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



Information transfer

??????? ?

`︷ ︸︸ ︷t
`︷ ︸︸ ︷

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1︸ ︷︷ ︸
Contributes to the dot product
with the same value at each
alignment
(δ = log q bits of information)
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Suppose that all values ( and ) from the stream are
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By linearity of expectation. . .
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Feed the algorithm with n values chosen uniformly at
random from [q].

The number of cell reads during the n inputs is at least∑
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No double counting of a
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[ ∑
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Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

Feed the algorithm with n values chosen uniformly at
random from [q].

The number of cell reads during the n inputs is at least∑
internal node v

|IT (tv, `v)|

No double counting of a
cell read!

The expected number of cell reads is at least

E

[ ∑
internal node v

|IT (tv, `v)|

]
=

∑
internal node v

E [|IT (tv, `v)|]

>
∑

internal node v

δ

4w
`v −

1

2

= Ω

(
δ

w
· n log n

)So. . .
The amortised time lower
bound per output is
Ω
(
δ
w log n

)



Multiplication in a stream

C., Jalsenius
Lower Bounds for Online Integer Multiplication and
Convolution in the Cell-Probe Mode. ICALP 2011

Paterson, Fischer and Meyer
An Improved Overlap Argument for On-Line Multiplication
SIAM-AMS Proceedings, 1974
For binary numbers on

• Multitape Turing machine: Ω(n log n)
• BAM or “bounded activity machine”:

Ω

(
n log n

log log n

)

Time lower bound: Ω
(
δ
w
· n log n

)
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Hamming distance

?

︸ ︷︷ ︸
n

s0 s1 s2 s4s3 s5 s6 s7

Stream of symbols from alphabet Σ

x1 x2 x3 x4 x5 x6 x7

Fixed string S

Lower bound: Ω

(
δ

w
log n

)
δ = log |Σ|

C., Jalsenius, Sach. Tight Cell-Probe Bounds for Online Hamming
Distance Computation. SODA 2013

Output Hamming distance between S and last n symbols of
stream.

x13x12x11x10x9x8



The hard instance - a first attempt

0110100010000000100000

4816

if the position is a power of 21

12

R

???? ? ?? ?

`=8︷ ︸︸ ︷
R R R R

`=8︷ ︸︸ ︷

0 = a symbol occurring only in the fixed string

Try a similar approach to before:

We can only infer whether is the symbol 1 or not,
i.e. only one bit of information.



Hamming distance

More difficult than convolution:

• Appear to get at most 1 bit of information per symbol.

• Too large alphabet implies large Hamming distance
(on random input), i.e. low entropy.

• Too small an alphabet implies low entropy per symbol.

• No obvious worst case pattern.
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Substring P at every power of two position, and 0 elsewhere
(a symbol that does not occur in the stream).
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(over alphabet Σ \ {0}) generates |Σ|Θ(|Σ|) distinct
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P

T



A harder instance

|Σ|
P P· · · 0 · · ·

2i+1

2i

Substring P at every power of two position, and 0 elsewhere
(a symbol that does not occur in the stream).

Lemma
There is a P s.t. sliding it over all 2|P | length strings T
(over alphabet Σ \ {0}) generates |Σ|Θ(|Σ|) distinct
Hamming array ouputs.

P

T

Great news! Highest entropy we can hope for.
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2i+1
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Tj+2Tj+1Tj Tj+3

Text stream

Each Tj is drawn uniformly from a set T of size |Σ|Θ(|Σ|).
Any two strings in T give distinct Hamming outputs with P .
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The hard instance

|Σ|
P P· · · 0 · · ·

2i+1

2i

Tj+2Tj+1Tj Tj+3

Text stream

Each Tj is drawn uniformly from a set T of size |Σ|Θ(|Σ|).
Any two strings in T give distinct Hamming outputs with P .

Recover Θ(`) symbols from a window of ` unknown input
symbols. Entropy:

Θ
( `

2|Σ|
· log |Σ|Θ(|Σ|)

)
= Θ(` · log |Σ|) = Θ(`δ)

δ = log |Σ|

Hence lower bound Ω

(
δ

w
log n

)

2|Σ|



The string P

� �

00 00 00 00 00 00 000000000011 22 23 33 4 5 5 6 66 7 7 88P

µ = |Σ|1/3

3 3 665 7 8������� ��� �� ���� ��� ��� ��� � ����1 2
T

4

� is a symbol that only occurs in T

• Partition P into blocks, each using a unique symbol.

�54 �17 3

Proof overview of the lemma.
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• Partition P into blocks, each using a unique symbol.
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• Symbols of T will slide over P , and match sums will
correspond to sums of binary vectors.

Proof overview of the lemma.
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• For each window of µ outputs, one can obtain µΘ(µ)

distinct vector sums. (Proof involves cyclic binary codes.)
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00 011

00
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111

111+

320 12

• For each window of µ outputs, one can obtain µΘ(µ)

distinct vector sums. (Proof involves cyclic binary codes.)

• Thus, over the whole of T there are |Σ|Θ(|Σ|) possible
distinct Hamming array ouputs.



What next?

Entirely new techniques appear to be needed again for
seemingly related problems. For example:
• Edit distance (outputs can be encoded in O(n) bits)
• Decision problems (entropy is very low)
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Thank you!

Entirely new techniques appear to be needed again for
seemingly related problems. For example:
• Edit distance (outputs can be encoded in O(n) bits)
• Decision problems (entropy is very low)
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