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Data Structure Lower Bounds

Yao - FOCS '78
Predecessor (static)
e Ajtai - Combinatorica '88 (incorrect) (Communication complexity)

e Miltersen - STOC' 94

e Miltersen, Nisan, Safra, Wigdersen - STOC '95
e Beame, Fich - STOC '99

e Sen - ICALP '01

Dynamic problems (partial sums, union find)

Fredman, Saks - STOC '89 (Chronogram technique)
Ben-Amram, Galil - FOCS '91

Miltersen, Subramanian, Vitter, Tamassia - TCS '94
Husfeldt, Rauhe, Skyum - SWAT '96 (planar connectivity)
Fredman, Henzinger - Algorithmica '98 (non-determinism)
Alstrup, Husfeldt, Rauhe - FOCS '98 (marked ancestor)
Alstrup, Husfeldt, Rauhe - SODA '01 (2D NN)

Alstrup, Ben-Amram, Rauhe - STOC '99 (union-find)
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Convolution

Stream of numbers from [q]

Lo | L1 | X | Xy Ly Ly Lg| Ly | <-—
[ N N IR M
Fixed vector —— |V | U1 | Vg | U3 | V4 | Us | Vg | U7
Ve lq]"

Output dot product (modulo g):

n—1

V'('E]St n dIgItS of stream) — Z Ui (i + leftmost aligned index)
1=0




Convolution

Stream of numbers from [q]

Lo | L1 | X Xy Ly Ly Lg L7 | L] | <-—
[ I N R IR E
Fixed vector —— |V | U1 | Vg | U3 | V4 | Us | Vg | U7
Ve lq]"

Output dot product (modulo g):

n—1

V'('E]St n dIgItS of stream) — Z Ui (i + leftmost aligned index)
1=0




Convolution

Stream of numbers from [q]

Lo | L1 | Lo Xy Ly Xy | Lg | L7 | X | L9 | +—
[ [ N N IR E R
Fixed vector —— |V | U1 | Vg | U3 | V4 | Us | Vg | U7
Ve lq]"

Output dot product (modulo g):

n—1

V'('E]St n dIgItS of stream) — Z Ui (i + leftmost aligned index)
1=0




Convolution
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Convolution

Stream of numbers from [q]

Lo | L1 | L2 | L3 | Ly | L5 |Le | L7 | L8| Lg L10L11 *+—
T T T 1T T ]
Fixed vector ——» |Ug | V1 | VU9 | V3 | Vg | Us | Vg | U7
Ve lgl"

Output dot product (modulo g):

n—1

V'('E]St n dIgItS of stream) — Z Ui (i + leftmost aligned index)
1=0




Convolution

Stream of numbers from [q]
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Convolution

Stream of numbers from [q]

L1 X2 | X3 |Lg | Ly |Lg L7 |Xg|Lg L10L11L12/L13 <+—
[ A R IR A R R
Fixed vector ——» |Ug | V1 | VU9 | V3 | Vg | Us | Vg | U7
Ve lq]"

Output dot product (modulo g):

n—1
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Convolution

Stream of numbers from [q]

L1

L2

X3

L4

L5

L6

L7

L8

Fixed vector ———»

Vo

(%]

(%

Ve |q"

Output dot product (modulo g):

n—1

V'('E]St n dIgItS of stream) — Z Ui (i + leftmost aligned index)
1=0

Lower bound: Q(ﬁ log n)

w

0 = log g, word size w.

C., Jalsenius. Lower Bounds for Online Integer Multiplication and
Convolution in the Cell-Probe Mode. ICALP 2011



Previous bounds

M. J. Fischer and L. J. Stockmeyer
Fast on-line integer multiplication

STOC '73

C., K. Efremenko, B. Porat and E. Porat
A black box for online approximate pattern matching
Information and Computation 209(4):731-736, 2011

e O(log” n) time per arriving symbol (pair)
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Fast on-line integer multiplication

STOC '73

C., K. Efremenko, B. Porat and E. Porat
A black box for online approximate pattern matching
Information and Computation 209(4):731-736, 2011

e O(log” n) time per arriving symbol (pair)

A Offline cell probe complexity is linear!
=

online upper bound of O(logn)




Previous bounds

M. J. Fischer and L. J. Stockmeyer
Fast on-line integer multiplication

STOC '73

C., K. Efremenko, B. Porat and E. Porat
A black box for online approximate pattern matching
Information and Computation 209(4):731-736, 2011

e O(log” n) time per arriving symbol (pair)

A Better online lower bound
=

super linear lower bound for
offline convolution and multiplication
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Information transfer
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w bits to encode
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Information transfer

N N D R A

Depends on the fixed vector j

How much information about |?[?|?| 7| do we need

in order to give correct outputs during - ?
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Information transfer

000 000/000/00/00/00/0]0

Output is always 0 (no information)



N > 7 |7 |

Information transfer
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N———
Contributes to the dot product
with the same value at each
alignment

(6 = log ¢ bits of information)
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Information transfer

Suppose that all values ('] and | ? |) from the stream are
chosen uniformly at random from |[q].

By linearity of expectation. ..

The Information transfer

5, 1
E[|IT(t,2)]] > 74— 3

w bits per cell
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The number of cell reads during the n inputs is at least

> T(t,0)
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T ATITNANVITTI LELIR"ALBLIL LliJ-

1 2 3 4 5 6 7v 38 9 10 11 12 13 14 15 16




otal number of cell reads

The number of cell reads during the n inputs is at least

> T (ty, b))

internal node v

T ATITNANVITTI LELIR"ALBLIL LliJ-

No double counting of a
cell read!

1 2 3 4 5 6 7v 38 9 10 11 12 13 14 15 16




otal number of cell reads

The number of cell reads during the n inputs is at least

> T (ty, b))

internal node v

The expected number of cell reads is at least

El Y [Tt = Y  E[IT(t, )]

_internal node v internal node v

_ 5 1
> 2 g3

internal node v

= Q(é ‘M logn>
w




otal number of cell reads

The number of cell reads during the n inputs is at least

> T(t,0)

internal node v

The expected number of cell reads is at least

El Y [Tt = Y  E[IT(t, )]

_internal node v

i internal node v

) 1
= —¥l, — —
56 . . . Z 4w 2
The amortised time lower internal node v
bound per output is 0
— Q= -nl
Q(3 logn) (w " Ogn)




Multiplication In a stream

Paterson, Fischer and Meyer
An Improved Overlap Argument for On-Line Multiplication

SIAM-AMS Proceedings, 1974
For binary numbers on

e Multitape Turing machine: Q(nlogn)
e BAM or “bounded activity machine”

of ™ logn
log logn

C., Jalsenius i
Lower Bounds for Online Integer Multlpllcatlon and
Convolution in the Cell-Probe Mode. ICALP 2011

Time lower bound: Q(% - n log n)



Hamming distance

Stream of symbols from alphabet X

L1 | X2 | X3 | XLy | Xy | Le | L7 | L] | L9 |L10XL11|L12|L 13 +—

Fixed string S —— | Sg |S1 /S92 |S3|S4|S5|Sg | Sy

Output Hamming distance between S and last n symbols of
stream.



Hamming distance

Stream of symbols from alphabet X

L1 | X2 | X3 | XLy | Xy | Le | L7 | L] | L9 |L10XL11|L12|L 13 +—

Fixed string S —— | Sg |S1 /S92 |S3|S4|S5|Sg | Sy

Output Hamming distance between S and last n symbols of
stream.

Lower bound: ) (é log n)

w
6 = log ||

C., Jalsenius, Sach. Tight Cell-Probe Bounds for Online Hamming
Distance Computation. SODA 2013



he hard instance - a first attempt

Try a similar approach to before:

/_/%/_/%

A 2 2 2 [RIRIRIR

)ooooooooooooooo
i } foor
16 8 4 2 1

0| = a symbol occurring only in the fixed string

1| if the position is a power of 2

We can only infer whether [R| is the symbol 1 or not,
I.e. only one bit of information.




Hamming distance

More difficult than convolution:
e Appear to get at most 1 bit of information per symbol.

e Too large alphabet implies large Hamming distance
(on random input), i.e. low entropy.

e [oo small an alphabet implies low entropy per symbol.

e No obvious worst case pattern.



A harder instance

< 2i—|—1 N

20—

0 33
=

Substring P at every power of two position, and 0 elsewhere
(a symbol that does not occur in the stream).
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Substring P at every power of two position, and 0 elsewhere
(a symbol that does not occur in the stream).

Lemma
There is a P s.t. sliding it over all 2| P| length strings T
(over alphabet X\ {0}) generates |Z|®U=D distinct

Hamming array ouputs. - T




A harder instance

< 2i—|—1 N

20—

0 33
=

Substring P at every power of two position, and 0 elsewhere
(a symbol that does not occur in the stream).

Lemma
There is a P s.t. sliding it over all 2| P| length strings T
(over alphabet X\ {0}) generates |Z|®U=D distinct

Hamming array ouputs. - T

Great news! Highest entropy we can hope for.




he hard instance

2 —
0 3
2| —— || —
T} Ty Tz Tj+s

<+— Text stream

Each T is drawn uniformly from a set T of size |%|®U=D).

Any two strings in 7 give distinct Hamming outputs with P.



he hard instance

= 2’H‘1 W >
2l —r—s
0 ;
2| —— || —
T} Ty Tz Tj+s

<+— Text stream

Each T is drawn uniformly from a set T of size |%|®U=D).

Any two strings in 7 give distinct Hamming outputs with P.

Recover ©(¢) symbols from a window of ¢ unknown input
symbols. Entropy:

0 1e -log [B[P0=D) = ©(¢ -log ) = ©(49)

2|32 0 = log |2



he hard instance

= 2’H‘1 W >
2l —r—s
0 ;
2| —— || —
T} Ty Tz Tj+s

<+— Text stream

Each T is drawn uniformly from a set 7 of size |X|9(=])

Hence lower bound Q(é log n)

w
A\ | V\’\// Jmll lllrlut—
symbols. Entropy:

l O
@(212‘ log | Y| ) O(¢ - log |X]) = O(40)

6 = log |X|



he string P

Proof overview of the lemma.
e Partition P into blocks, each using a unique symbol.

¢ 1s a symbol that only occurs in T’



he string P

Proof overview of the lemma.
e Partition P into blocks, each using a unique symbol.

e Symbols of T will slide over P, and match sums will
correspond to sums of binary vectors.

> 0[0]1{1]0

L{Oj0[L[1
//;f LOI]1}0 4—\\\

6
16101616(0

4010

0

¢ 1s a symbol that only occurs in T’



he string P

e For each window of i outputs, one can obtain p®*)
distinct vector sums. (Proof involves cyclic binary codes.)

1|010(1|1

6
16101616(0

4010

0

¢ 1s a symbol that only occurs in T’



he string P

e For each window of i outputs, one can obtain p®*)

C

istinct vector sums. (Proof involves cyclic binary codes.)

e Thus, over the whole of T there are |X|®U*D possible

C

Istinct Hamming array ouputs.

> 0[0]1{1]0

L{Oj0[L[1
//;f LOI]1}0 4—\\\

¢ 1s a symbol that only occurs in T’



What next?

Entirely new techniques appear to be needed again for
seemingly related problems. For example:
e Edit distance (outputs can be encoded in O(n) bits)
e Decision problems (entropy is very low)



What next?

Entirely new techniques appear to be needed again for
seemingly related problems. For example:
e Edit distance (outputs can be encoded in O(n) bits)
e Decision problems (entropy is very low)

Thank you!
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