Lower bounds for Streaming Problems

Raphaël Clifford

Joint work with Markus Jalsenius and Benjamin Sach

Cell-probe model

Cell-probe model

computational power.

Data Structure Lower Bounds

Yao - FOCS '78

Predecessor (static)

- Ajtai Combinatorica '88 (incorrect) (Communication complexity)
- Miltersen STOC' 94
- Miltersen, Nisan, Safra, Wigdersen STOC '95
- Beame, Fich STOC '99
- Sen ICALP '01

Dynamic problems (partial sums, union find)

- Fredman, Saks STOC '89 (Chronogram technique)
- Ben-Amram, Galil FOCS '91
- Miltersen, Subramanian, Vitter, Tamassia TCS '94
- Husfeldt, Rauhe, Skyum SWAT '96 (planar connectivity)
- Fredman, Henzinger Algorithmica '98 (non-determinism)
- Alstrup, Husfeldt, Rauhe FOCS '98 (marked ancestor)
- Alstrup, Husfeldt, Rauhe SODA '01 (2D NN)
- Alstrup, Ben-Amram, Rauhe STOC '99 (union-find)

Data Structure Lower Bounds

Yao - FOCS '78

Predecessor (static)

- Ajtai Combinatorica '88 (incorrect) (Communication complexity)
- Miltersen STOC' 94
- Miltersen, Nisan, Safra, Wigdersen STOC '95
- Beame, Fich STOC '99
- Sen ICALP '01

Dynamic problems (partial sums, union find)

• Fredman, Saks - STOC '89 (Chronogram technique)

Data Structure Lower Bounds

Yao - FOCS '78

Predecessor (static)

- Ajtai Combinatorica '88 (incorrect) (Communication complexity)
- Miltersen STOC' 94
- Miltersen, Nisan, Safra, Wigdersen STOC '95
- Be
- Set First $\Omega(\log n)$ lower bound using *information transfer*.

Dynan

- Fre
- Be M. Pătrașcu and E. Demaine
- Mi Tight bounds for the partial-sums problem
- Hu SODA 2004
- Freeman, menzinger Aigontinnica 30 (non-acterininsin)
- Alstrup, Husfeldt, Rauhe FOCS '98 (marked ancestor)
- Alstrup, Husfeldt, Rauhe SODA '01 (2D NN)
- Alstrup, Ben-Amram, Rauhe STOC '99 (union-find)

Stream of numbers from $\left[q\right]$

 $\delta = \log q$, word size w.

C., Jalsenius. Lower Bounds for Online Integer Multiplication and Convolution in the Cell-Probe Mode. ICALP 2011

Previous bounds

M. J. Fischer and L. J. Stockmeyer Fast on-line integer multiplication STOC '73

C., K. Efremenko, B. Porat and E. Porat A black box for online approximate pattern matching Information and Computation 209(4):731–736, 2011

• $O(\log^2 n)$ time per arriving symbol (pair)

Previous bounds

M. J. Fischer and L. J. Stockmeyer Fast on-line integer multiplication STOC '73

C., K. Efremenko, B. Porat and E. Porat A black box for online approximate pattern matching Information and Computation 209(4):731–736, 2011

• $O(\log^2 n)$ time per arriving symbol (pair)

Previous bounds

M. J. Fischer and L. J. Stockmeyer Fast on-line integer multiplication STOC '73

C., K. Efremenko, B. Porat and E. Porat A black box for online approximate pattern matching Information and Computation 209(4):731–736, 2011

• $O(\log^2 n)$ time per arriving symbol (pair)

Yao's minimax principle

A lower bound on the expected running time for

implies that the same lower bound holds for

Yao's minimax principle

A lower bound on the expected running time for

implies that the same lower bound holds for

Unknown value chosen uniformly at random from [q]

?

at random from $\left[q\right]$

Unknown value chosen uniformly at random from [q]

?

Fixed value

?

Unknown value chosen uniformly at random from [q]

chosen uniformly at random from [q]

Fixed value

?

Unknown value chosen uniformly at random from [q]

Memory cells

chosen uniformly at random from [q]

the <u>?</u>-inputs

Cell written during

w bits per cell

How much information about ???? do we need

in order to give correct outputs during

?

in order to give correct outputs during

?

Output is always 0 (no information)

Contributes to the dot product with the same value at each alignment $(\delta = \log q \text{ bits of information})$

R = a recovered value (recall that ? is chosen uniformly at random from [q], hence contributes with $\delta = \log q$ bits to the entropy)

Conclusion: If ℓ is a power of 2 then we recover $\frac{\ell}{2}$ values

Conclusion: If ℓ is a power of 2 then we recover $\frac{\ell}{2}$ values

Suppose that all values (and ?) from the stream are chosen uniformly at random from [q].

By linearity of expectation...

The conditional information transfer

 $\mathbb{E}\left[|IT(t,\ell)| \mid \mathsf{all} \quad \mathsf{fixed}\right] \geq \frac{\delta}{4w}\ell - \frac{1}{2}$

w bits per cell

Suppose that all values (and ?) from the stream are chosen uniformly at random from [q].

By linearity of expectation...

The conditional information transfer

 $\mathbb{E}\left[|IT(t,\ell)|\right]| \text{ all } \text{ fixed}\right] \ge \frac{\delta}{4w}\ell - \frac{1}{2}$

w bits per cell

Multiplication in a stream

Paterson, Fischer and Meyer

An Improved Overlap Argument for On-Line Multiplication SIAM-AMS Proceedings, 1974 For binary numbers on

- Multitape Turing machine: $\Omega(n \log n)$
- BAM or "bounded activity machine":

$$\Omega\!\left(\frac{n\log n}{\log\log n}\right)$$

C., Jalsenius

Lower Bounds for Online Integer Multiplication and Convolution in the Cell-Probe Mode. ICALP 2011

Time lower bound: $\Omega(\frac{\delta}{w} \cdot n \log n)$
Hamming distance

Stream of symbols from alphabet $\boldsymbol{\Sigma}$

Output Hamming distance between S and last n symbols of stream.

Hamming distance

Stream of symbols from alphabet $\boldsymbol{\Sigma}$

Output Hamming distance between S and last n symbols of stream.

Lower bound:
$$\Omega\left(\frac{\delta}{w}\log n\right)$$

 $\delta = \log |\Sigma|$

C., Jalsenius, Sach. Tight Cell-Probe Bounds for Online Hamming Distance Computation. SODA 2013

The hard instance - a first attempt

Try a similar approach to before:

We can only infer whether **R** is the symbol 1 or not, i.e. only one bit of information.

Hamming distance

More difficult than convolution:

- Appear to get at most 1 bit of information per symbol.
- Too large alphabet implies large Hamming distance (on random input), i.e. low entropy.
- Too small an alphabet implies low entropy per symbol.
- No obvious worst case pattern.

A harder instance

Substring P at every power of two position, and 0 elsewhere (a symbol that does not occur in the stream).

A harder instance

Substring P at every power of two position, and 0 elsewhere (a symbol that does not occur in the stream).

Lemma

There is a P s.t. sliding it over all 2|P| length strings T(over alphabet $\Sigma \setminus \{0\}$) generates $|\Sigma|^{\Theta(|\Sigma|)}$ distinct Hamming array ouputs.

$$P \rightarrow$$

A harder instance

Substring P at every power of two position, and 0 elsewhere (a symbol that does not occur in the stream).

Lemma

There is a P s.t. sliding it over all 2|P| length strings T(over alphabet $\Sigma \setminus \{0\}$) generates $|\Sigma|^{\Theta(|\Sigma|)}$ distinct Hamming array ouputs.

Great news! Highest entropy we can hope for.

The hard instance

Text stream

Each T_j is drawn uniformly from a set \mathcal{T} of size $|\Sigma|^{\Theta(|\Sigma|)}$. Any two strings in \mathcal{T} give distinct Hamming outputs with P.

The hard instance

Text stream

Each T_j is drawn uniformly from a set \mathcal{T} of size $|\Sigma|^{\Theta(|\Sigma|)}$. Any two strings in \mathcal{T} give distinct Hamming outputs with P.

Recover $\Theta(\ell)$ symbols from a window of ℓ unknown input symbols. Entropy:

$$\Theta\left(\frac{\ell}{2|\Sigma|} \cdot \log|\Sigma|^{\Theta(|\Sigma|)}\right) = \Theta(\ell \cdot \log|\Sigma|) = \Theta(\ell\delta) \qquad \delta = \log|\Sigma|$$

The hard instance

$$\Theta\left(\frac{\ell}{2|\Sigma|} \cdot \log|\Sigma|^{\Theta(|\Sigma|)}\right) = \Theta(\ell \cdot \log|\Sigma|) = \Theta(\ell\delta)$$
$$\delta = \log|\Sigma|$$

The string P

Proof overview of the lemma.

• Partition P into blocks, each using a unique symbol.

The string P

Proof overview of the lemma.

- Partition P into blocks, each using a unique symbol.
- Symbols of T will slide over P, and match sums will correspond to sums of binary vectors.

The string ${\cal P}$

• For each window of μ outputs, one can obtain $\mu^{\Theta(\mu)}$ distinct vector sums. (Proof involves cyclic binary codes.)

The string ${\cal P}$

- For each window of μ outputs, one can obtain $\mu^{\Theta(\mu)}$ distinct vector sums. (Proof involves cyclic binary codes.)
- Thus, over the whole of T there are $|\Sigma|^{\Theta(|\Sigma|)}$ possible distinct Hamming array ouputs.

What next?

Entirely new techniques appear to be needed again for seemingly related problems. For example:

- Edit distance (outputs can be encoded in O(n) bits)
- Decision problems (entropy is very low)

What next?

Entirely new techniques appear to be needed again for seemingly related problems. For example:

- Edit distance (outputs can be encoded in O(n) bits)
- Decision problems (entropy is very low)

Thank you!